Mohammad Asif Arefin, Nazrul Islam, B. Gain, Mohammad Roknujjaman
{"title":"修正欧拉法求解ode初值问题的精度分析","authors":"Mohammad Asif Arefin, Nazrul Islam, B. Gain, Mohammad Roknujjaman","doi":"10.5815/ijmsc.2021.02.04","DOIUrl":null,"url":null,"abstract":"There exist numerous numerical methods for solving the initial value problems of ordinary differential equations. The accuracy level and computational time are not the same for all of these methods. In this article, the Modified Euler method has been discussed for solving and finding the accurate solution of Ordinary Differential Equations using different step sizes. Approximate Results obtained by different step sizes are shown using the result analysis table. Some problems are solved by the proposed method then approximated results are shown graphically compare to the exact solution for a better understanding of the accuracy level of this method. Errors are estimated for each step and are represented graphically using Matlab Programming Language and MS Excel, which reveals that so much small step size gives better accuracy with less computational error. It is observed that this method is suitable for obtaining the accurate solution of ODEs when the taken step sizes are too much small.","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accuracy Analysis for the Solution of Initial Value Problem of ODEs Using Modified Euler Method\",\"authors\":\"Mohammad Asif Arefin, Nazrul Islam, B. Gain, Mohammad Roknujjaman\",\"doi\":\"10.5815/ijmsc.2021.02.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist numerous numerical methods for solving the initial value problems of ordinary differential equations. The accuracy level and computational time are not the same for all of these methods. In this article, the Modified Euler method has been discussed for solving and finding the accurate solution of Ordinary Differential Equations using different step sizes. Approximate Results obtained by different step sizes are shown using the result analysis table. Some problems are solved by the proposed method then approximated results are shown graphically compare to the exact solution for a better understanding of the accuracy level of this method. Errors are estimated for each step and are represented graphically using Matlab Programming Language and MS Excel, which reveals that so much small step size gives better accuracy with less computational error. It is observed that this method is suitable for obtaining the accurate solution of ODEs when the taken step sizes are too much small.\",\"PeriodicalId\":312036,\"journal\":{\"name\":\"International Journal of Mathematical Sciences and Computing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Sciences and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijmsc.2021.02.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2021.02.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accuracy Analysis for the Solution of Initial Value Problem of ODEs Using Modified Euler Method
There exist numerous numerical methods for solving the initial value problems of ordinary differential equations. The accuracy level and computational time are not the same for all of these methods. In this article, the Modified Euler method has been discussed for solving and finding the accurate solution of Ordinary Differential Equations using different step sizes. Approximate Results obtained by different step sizes are shown using the result analysis table. Some problems are solved by the proposed method then approximated results are shown graphically compare to the exact solution for a better understanding of the accuracy level of this method. Errors are estimated for each step and are represented graphically using Matlab Programming Language and MS Excel, which reveals that so much small step size gives better accuracy with less computational error. It is observed that this method is suitable for obtaining the accurate solution of ODEs when the taken step sizes are too much small.