关于分级结合代数的幂零性

A. Chanyshev
{"title":"关于分级结合代数的幂零性","authors":"A. Chanyshev","doi":"10.1070/SM1992V071N02ABEH001402","DOIUrl":null,"url":null,"abstract":"It is proved that an associative PI-algebra over a field of characteristic zero that is graded by an arbitrary semigroup and that satisfies the relation an = 0 for all homogeneous elements and is generated by a finite number of its homogeneous components is nilpotent. This generalizes a well-known theorem of M. Nagata.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON NILPOTENCY OF GRADED ASSOCIATIVE ALGEBRAS\",\"authors\":\"A. Chanyshev\",\"doi\":\"10.1070/SM1992V071N02ABEH001402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved that an associative PI-algebra over a field of characteristic zero that is graded by an arbitrary semigroup and that satisfies the relation an = 0 for all homogeneous elements and is generated by a finite number of its homogeneous components is nilpotent. This generalizes a well-known theorem of M. Nagata.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V071N02ABEH001402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V071N02ABEH001402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

证明了在特征为0的域上,由任意半群分阶,满足所有齐次元素的an = 0关系,由有限个齐次分量生成的结合pi -代数是幂零的。这推广了Nagata的一个著名定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON NILPOTENCY OF GRADED ASSOCIATIVE ALGEBRAS
It is proved that an associative PI-algebra over a field of characteristic zero that is graded by an arbitrary semigroup and that satisfies the relation an = 0 for all homogeneous elements and is generated by a finite number of its homogeneous components is nilpotent. This generalizes a well-known theorem of M. Nagata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信