模糊粗糙集的若干信息测度

Omdutt Sharma, Pratiksha Tiwari, Priti Gupta
{"title":"模糊粗糙集的若干信息测度","authors":"Omdutt Sharma, Pratiksha Tiwari, Priti Gupta","doi":"10.4018/IJFSA.2021040105","DOIUrl":null,"url":null,"abstract":"Information theory is a tool to measure uncertainty; these days, it is used to solve various challenging problems that involve hybridization of information theory with the fuzzy set, rough sets, vague sets, etc. In order to solve challenging problems in scientific data analysis and visualization recently, various authors are working on hybrid measures of information theory. In this paper, using the relation between information measures, some measures are proposed for the fuzzy rough set. Firstly, an entropy measure is derived using the fuzzy rough similarity measure, and then corresponding to this entropy measure, some other measures like mutual information measure, joint entropy measure, and conditional entropy measure are also proposed. Some properties of these measures are also studied. Later, the proposed measure is compared with some existing measures to prove its efficiency. Further, the proposed measures are applied to pattern recognition, medical diagnoses, and a real-life decision-making problem for incorporating software in the curriculum at the Department of Statistics.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Information Measures for Fuzzy Rough Sets\",\"authors\":\"Omdutt Sharma, Pratiksha Tiwari, Priti Gupta\",\"doi\":\"10.4018/IJFSA.2021040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information theory is a tool to measure uncertainty; these days, it is used to solve various challenging problems that involve hybridization of information theory with the fuzzy set, rough sets, vague sets, etc. In order to solve challenging problems in scientific data analysis and visualization recently, various authors are working on hybrid measures of information theory. In this paper, using the relation between information measures, some measures are proposed for the fuzzy rough set. Firstly, an entropy measure is derived using the fuzzy rough similarity measure, and then corresponding to this entropy measure, some other measures like mutual information measure, joint entropy measure, and conditional entropy measure are also proposed. Some properties of these measures are also studied. Later, the proposed measure is compared with some existing measures to prove its efficiency. Further, the proposed measures are applied to pattern recognition, medical diagnoses, and a real-life decision-making problem for incorporating software in the curriculum at the Department of Statistics.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJFSA.2021040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJFSA.2021040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息论是测量不确定性的工具;目前,它被用于解决信息理论与模糊集、粗糙集、模糊集等混合的各种具有挑战性的问题。近年来,为了解决科学数据分析和可视化中的难题,许多作者都在研究信息论的混合度量。本文利用信息测度之间的关系,对模糊粗糙集提出了一些测度。首先利用模糊粗糙相似测度导出了一个熵测度,然后在此熵测度的基础上,提出了互信息测度、联合熵测度、条件熵测度等熵测度。研究了这些测度的一些性质。最后,将该方法与现有的几种方法进行了比较,验证了其有效性。此外,拟议的措施还适用于模式识别、医疗诊断和将软件纳入统计司课程的实际决策问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Information Measures for Fuzzy Rough Sets
Information theory is a tool to measure uncertainty; these days, it is used to solve various challenging problems that involve hybridization of information theory with the fuzzy set, rough sets, vague sets, etc. In order to solve challenging problems in scientific data analysis and visualization recently, various authors are working on hybrid measures of information theory. In this paper, using the relation between information measures, some measures are proposed for the fuzzy rough set. Firstly, an entropy measure is derived using the fuzzy rough similarity measure, and then corresponding to this entropy measure, some other measures like mutual information measure, joint entropy measure, and conditional entropy measure are also proposed. Some properties of these measures are also studied. Later, the proposed measure is compared with some existing measures to prove its efficiency. Further, the proposed measures are applied to pattern recognition, medical diagnoses, and a real-life decision-making problem for incorporating software in the curriculum at the Department of Statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信