{"title":"直方图比较的扩散距离","authors":"Haibin Ling, K. Okada","doi":"10.1109/CVPR.2006.99","DOIUrl":null,"url":null,"abstract":"In this paper we propose diffusion distance, a new dissimilarity measure between histogram-based descriptors. We define the difference between two histograms to be a temperature field. We then study the relationship between histogram similarity and a diffusion process, showing how diffusion handles deformation as well as quantization effects. As a result, the diffusion distance is derived as the sum of dissimilarities over scales. Being a cross-bin histogram distance, the diffusion distance is robust to deformation, lighting change and noise in histogram-based local descriptors. In addition, it enjoys linear computational complexity which significantly improves previously proposed cross-bin distances with quadratic complexity or higher. We tested the proposed approach on both shape recognition and interest point matching tasks using several multi-dimensional histogram-based descriptors including shape context, SIFT, and spin images. In all experiments, the diffusion distance performs excellently in both accuracy and efficiency in comparison with other state-of-the-art distance measures. In particular, it performs as accurately as the Earth Mover’s Distance with much greater efficiency.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"270","resultStr":"{\"title\":\"Diffusion Distance for Histogram Comparison\",\"authors\":\"Haibin Ling, K. Okada\",\"doi\":\"10.1109/CVPR.2006.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose diffusion distance, a new dissimilarity measure between histogram-based descriptors. We define the difference between two histograms to be a temperature field. We then study the relationship between histogram similarity and a diffusion process, showing how diffusion handles deformation as well as quantization effects. As a result, the diffusion distance is derived as the sum of dissimilarities over scales. Being a cross-bin histogram distance, the diffusion distance is robust to deformation, lighting change and noise in histogram-based local descriptors. In addition, it enjoys linear computational complexity which significantly improves previously proposed cross-bin distances with quadratic complexity or higher. We tested the proposed approach on both shape recognition and interest point matching tasks using several multi-dimensional histogram-based descriptors including shape context, SIFT, and spin images. In all experiments, the diffusion distance performs excellently in both accuracy and efficiency in comparison with other state-of-the-art distance measures. In particular, it performs as accurately as the Earth Mover’s Distance with much greater efficiency.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"270\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we propose diffusion distance, a new dissimilarity measure between histogram-based descriptors. We define the difference between two histograms to be a temperature field. We then study the relationship between histogram similarity and a diffusion process, showing how diffusion handles deformation as well as quantization effects. As a result, the diffusion distance is derived as the sum of dissimilarities over scales. Being a cross-bin histogram distance, the diffusion distance is robust to deformation, lighting change and noise in histogram-based local descriptors. In addition, it enjoys linear computational complexity which significantly improves previously proposed cross-bin distances with quadratic complexity or higher. We tested the proposed approach on both shape recognition and interest point matching tasks using several multi-dimensional histogram-based descriptors including shape context, SIFT, and spin images. In all experiments, the diffusion distance performs excellently in both accuracy and efficiency in comparison with other state-of-the-art distance measures. In particular, it performs as accurately as the Earth Mover’s Distance with much greater efficiency.