ALT模型中先验加权贝叶斯参数估计

S. Voiculescu, F. Guérin
{"title":"ALT模型中先验加权贝叶斯参数估计","authors":"S. Voiculescu, F. Guérin","doi":"10.1080/16843703.2011.11673269","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of the application of Bayesian inference to accelerated life testing (ALT) models for the concrete case of estimation by Maximum of Aposteriori (MAP) method in the case of constant stress levels. It studies the Bayesian inference over the accelerated life model as presented in [1]. It suites, integrates and generalizes the particular cases presented in [2] and [3]. Towards the end, weighting of the prior information according to data is integrated. The paper also illustrates an experimental example.","PeriodicalId":201787,"journal":{"name":"2009 Annual Reliability and Maintainability Symposium","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bayesian parameter estimation with prior weighting in ALT model\",\"authors\":\"S. Voiculescu, F. Guérin\",\"doi\":\"10.1080/16843703.2011.11673269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an overview of the application of Bayesian inference to accelerated life testing (ALT) models for the concrete case of estimation by Maximum of Aposteriori (MAP) method in the case of constant stress levels. It studies the Bayesian inference over the accelerated life model as presented in [1]. It suites, integrates and generalizes the particular cases presented in [2] and [3]. Towards the end, weighting of the prior information according to data is integrated. The paper also illustrates an experimental example.\",\"PeriodicalId\":201787,\"journal\":{\"name\":\"2009 Annual Reliability and Maintainability Symposium\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Annual Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16843703.2011.11673269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16843703.2011.11673269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文综述了贝叶斯推理在加速寿命试验(ALT)模型中的应用,并给出了恒应力水平下最大乘次概率法(MAP)估计的具体实例。它研究了[1]中提出的加速寿命模型的贝叶斯推理。它对[2]和[3]中提出的具体案例进行了套用、整合和概括。最后,根据数据对先验信息进行加权。文中还给出了一个实验实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian parameter estimation with prior weighting in ALT model
This paper provides an overview of the application of Bayesian inference to accelerated life testing (ALT) models for the concrete case of estimation by Maximum of Aposteriori (MAP) method in the case of constant stress levels. It studies the Bayesian inference over the accelerated life model as presented in [1]. It suites, integrates and generalizes the particular cases presented in [2] and [3]. Towards the end, weighting of the prior information according to data is integrated. The paper also illustrates an experimental example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信