基于模型的离散事件系统异常检测

Timo Klerx, Maik Anderka, H. K. Büning, Steffen Priesterjahn
{"title":"基于模型的离散事件系统异常检测","authors":"Timo Klerx, Maik Anderka, H. K. Büning, Steffen Priesterjahn","doi":"10.1109/ICTAI.2014.105","DOIUrl":null,"url":null,"abstract":"Model-based anomaly detection in technical systems is an important application field of artificial intelligence. We consider discrete event systems, which is a system class to which a wide range of relevant technical systems belong and for which no comprehensive model-based anomaly detection approach exists so far. The original contributions of this paper are threefold: First, we identify the types of anomalies that occur in discrete event systems and we propose a tailored behavior model that captures all anomaly types, called probabilistic deterministic timed-transition automata (PDTTA). Second, we present a new algorithm to learn a PDTTA from sample observations of a system. Third, we describe an approach to detect anomalies based on a learned PDTTA. An empirical evaluation in a practical application, namely ATM fraud detection, shows promising results.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Model-Based Anomaly Detection for Discrete Event Systems\",\"authors\":\"Timo Klerx, Maik Anderka, H. K. Büning, Steffen Priesterjahn\",\"doi\":\"10.1109/ICTAI.2014.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based anomaly detection in technical systems is an important application field of artificial intelligence. We consider discrete event systems, which is a system class to which a wide range of relevant technical systems belong and for which no comprehensive model-based anomaly detection approach exists so far. The original contributions of this paper are threefold: First, we identify the types of anomalies that occur in discrete event systems and we propose a tailored behavior model that captures all anomaly types, called probabilistic deterministic timed-transition automata (PDTTA). Second, we present a new algorithm to learn a PDTTA from sample observations of a system. Third, we describe an approach to detect anomalies based on a learned PDTTA. An empirical evaluation in a practical application, namely ATM fraud detection, shows promising results.\",\"PeriodicalId\":142794,\"journal\":{\"name\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2014.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

技术系统中基于模型的异常检测是人工智能的一个重要应用领域。我们考虑离散事件系统,这是一个系统类,它属于广泛的相关技术系统,目前还没有全面的基于模型的异常检测方法。本文的原始贡献有三个方面:首先,我们确定了离散事件系统中发生的异常类型,并提出了一个定制的行为模型,该模型可以捕获所有异常类型,称为概率确定性定时转换自动机(PDTTA)。其次,我们提出了一种从系统的样本观测中学习PDTTA的新算法。第三,我们描述了一种基于学习PDTTA的异常检测方法。在实际应用中进行了实证评估,即ATM欺诈检测,显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Based Anomaly Detection for Discrete Event Systems
Model-based anomaly detection in technical systems is an important application field of artificial intelligence. We consider discrete event systems, which is a system class to which a wide range of relevant technical systems belong and for which no comprehensive model-based anomaly detection approach exists so far. The original contributions of this paper are threefold: First, we identify the types of anomalies that occur in discrete event systems and we propose a tailored behavior model that captures all anomaly types, called probabilistic deterministic timed-transition automata (PDTTA). Second, we present a new algorithm to learn a PDTTA from sample observations of a system. Third, we describe an approach to detect anomalies based on a learned PDTTA. An empirical evaluation in a practical application, namely ATM fraud detection, shows promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信