考虑类别与区域相互关系的变压器预测人类行为

Ryoichi Osawa, Keiichi Suekane, Ryoko Nakamura, Aozora Inagaki, T. Takagi, Isshu Munemasa
{"title":"考虑类别与区域相互关系的变压器预测人类行为","authors":"Ryoichi Osawa, Keiichi Suekane, Ryoko Nakamura, Aozora Inagaki, T. Takagi, Isshu Munemasa","doi":"10.1109/MIPR51284.2021.00029","DOIUrl":null,"url":null,"abstract":"Recently, studies on human behavior have been frequently conducted. Predicting human mobility is one area of interest. However, it is difficult since human activities are the result of various factors such as periodicity, changes of preferences, and geographical effects. When predicting human mobility, it is essential to capture these factors.Humans may go to particular areas to visit a store of a desired category. Also, since stores of a particular category tend to open in specific areas, trajectories of visited geographical regions are helpful in understanding the purpose of visits. Therefore, the purposes of visiting stores of a desired category and of visiting a region affect each other. Capturing this mutual dependency enables to predict with higher accuracy than modeling only the superficial trajectory sequence. To capture it, a mechanism that can dynamically adjust the important categories depending on region was necessary, but the conventional methods, which can only perform static operations, have structural limitations.In the proposed model, we used the Transformer to address this problem. However, since a default Transformer can only capture unidirectional relationships, the proposed model uses mutually connected Transformers to capture the mutual relationships between categories and regions.Furthermore, most human activities have a weekly periodicity, and it is highly possible that only a part of a trajectory is important to predict human mobility. Therefore, we propose an encoder that captures the periodicity of human mobility and an attention mechanism to extract the important part of the trajectory.In our experiments, we predict whether a user will visit stores in specific categories and regions taking the trajectory sequence as input. By comparing our model with existing models, we show that the model outperforms state-of-the-art (SOTA) models in similar tasks in this experimental setup.","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Human Behavior with Transformer Considering the Mutual Relationship between Categories and Regions\",\"authors\":\"Ryoichi Osawa, Keiichi Suekane, Ryoko Nakamura, Aozora Inagaki, T. Takagi, Isshu Munemasa\",\"doi\":\"10.1109/MIPR51284.2021.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, studies on human behavior have been frequently conducted. Predicting human mobility is one area of interest. However, it is difficult since human activities are the result of various factors such as periodicity, changes of preferences, and geographical effects. When predicting human mobility, it is essential to capture these factors.Humans may go to particular areas to visit a store of a desired category. Also, since stores of a particular category tend to open in specific areas, trajectories of visited geographical regions are helpful in understanding the purpose of visits. Therefore, the purposes of visiting stores of a desired category and of visiting a region affect each other. Capturing this mutual dependency enables to predict with higher accuracy than modeling only the superficial trajectory sequence. To capture it, a mechanism that can dynamically adjust the important categories depending on region was necessary, but the conventional methods, which can only perform static operations, have structural limitations.In the proposed model, we used the Transformer to address this problem. However, since a default Transformer can only capture unidirectional relationships, the proposed model uses mutually connected Transformers to capture the mutual relationships between categories and regions.Furthermore, most human activities have a weekly periodicity, and it is highly possible that only a part of a trajectory is important to predict human mobility. Therefore, we propose an encoder that captures the periodicity of human mobility and an attention mechanism to extract the important part of the trajectory.In our experiments, we predict whether a user will visit stores in specific categories and regions taking the trajectory sequence as input. By comparing our model with existing models, we show that the model outperforms state-of-the-art (SOTA) models in similar tasks in this experimental setup.\",\"PeriodicalId\":139543,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR51284.2021.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,关于人类行为的研究频繁进行。预测人类的流动性是一个有趣的领域。然而,由于人类活动是周期性、偏好变化和地理影响等各种因素的结果,因此很难做到这一点。在预测人类流动性时,必须捕捉这些因素。人们可能会去特定的区域去参观一个想要的类别的商店。此外,由于特定类别的商店往往在特定区域开业,因此访问地理区域的轨迹有助于了解访问的目的。因此,访问所需类别商店的目的和访问一个地区的目的是相互影响的。捕获这种相互依赖关系能够比仅对表面轨迹序列建模更准确地进行预测。为了捕获它,需要一种可以根据区域动态调整重要类别的机制,但传统方法只能执行静态操作,具有结构局限性。在建议的模型中,我们使用Transformer来解决这个问题。然而,由于默认的Transformer只能捕获单向关系,因此建议的模型使用相互连接的Transformer来捕获类别和区域之间的相互关系。此外,大多数人类活动都有每周的周期性,很可能只有轨迹的一部分对预测人类的流动性很重要。因此,我们提出了一种捕捉人类移动周期性的编码器和一种提取轨迹重要部分的注意机制。在我们的实验中,我们以轨迹序列作为输入,预测用户是否会访问特定类别和地区的商店。通过将我们的模型与现有模型进行比较,我们表明该模型在该实验设置的类似任务中优于最先进的(SOTA)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Human Behavior with Transformer Considering the Mutual Relationship between Categories and Regions
Recently, studies on human behavior have been frequently conducted. Predicting human mobility is one area of interest. However, it is difficult since human activities are the result of various factors such as periodicity, changes of preferences, and geographical effects. When predicting human mobility, it is essential to capture these factors.Humans may go to particular areas to visit a store of a desired category. Also, since stores of a particular category tend to open in specific areas, trajectories of visited geographical regions are helpful in understanding the purpose of visits. Therefore, the purposes of visiting stores of a desired category and of visiting a region affect each other. Capturing this mutual dependency enables to predict with higher accuracy than modeling only the superficial trajectory sequence. To capture it, a mechanism that can dynamically adjust the important categories depending on region was necessary, but the conventional methods, which can only perform static operations, have structural limitations.In the proposed model, we used the Transformer to address this problem. However, since a default Transformer can only capture unidirectional relationships, the proposed model uses mutually connected Transformers to capture the mutual relationships between categories and regions.Furthermore, most human activities have a weekly periodicity, and it is highly possible that only a part of a trajectory is important to predict human mobility. Therefore, we propose an encoder that captures the periodicity of human mobility and an attention mechanism to extract the important part of the trajectory.In our experiments, we predict whether a user will visit stores in specific categories and regions taking the trajectory sequence as input. By comparing our model with existing models, we show that the model outperforms state-of-the-art (SOTA) models in similar tasks in this experimental setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信