大数据分析中的梯度增强机器和深度学习方法:以股票市场为例

Lokesh Kumar Shrivastav, Ravinder Kumar
{"title":"大数据分析中的梯度增强机器和深度学习方法:以股票市场为例","authors":"Lokesh Kumar Shrivastav, Ravinder Kumar","doi":"10.4018/jitr.2022010101","DOIUrl":null,"url":null,"abstract":"Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gradient Boosting Machine and Deep Learning Approach in Big Data Analysis: A Case Study of the Stock Market\",\"authors\":\"Lokesh Kumar Shrivastav, Ravinder Kumar\",\"doi\":\"10.4018/jitr.2022010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.2022010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2022010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计一个用于分析高频数据(大数据)的系统是数据科学中非常具有挑战性和关键的任务。大数据分析涉及开发高效的机器学习算法和大数据处理技术或框架。如今,数据处理系统的发展对高频数据的高效处理提出了很高的要求。本文提出了一种改进的合适梯度增强机(GBM)来处理和分析随机高频股票市场数据。实验结果与深度学习和自回归综合移动平均(ARIMA)方法进行了比较。与其他两种方法相比,使用改进的GBM方法获得的结果精度最高(R2 = 0.98),误差最小(RMSE = 0.85)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient Boosting Machine and Deep Learning Approach in Big Data Analysis: A Case Study of the Stock Market
Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信