3D- splinenet:使用参数样条表示的3D交通线检测

M. Pittner, A. Condurache, J. Janai
{"title":"3D- splinenet:使用参数样条表示的3D交通线检测","authors":"M. Pittner, A. Condurache, J. Janai","doi":"10.1109/WACV56688.2023.00067","DOIUrl":null,"url":null,"abstract":"Monocular 3D traffic line detection jointly tackles the detection of lane markings and regression of their 3D location. The greatest challenge is the exact estimation of various line shapes in the world, which highly depends on the chosen representation. While anchor-based and grid-based line representations have been proposed, all suffer from the same limitation, the necessity of discretizing the 3D space. To address this limitation, we present an anchor-free parametric lane representation, which defines traffic lines as continuous curves in 3D space. Choosing splines as our representation, we show their superiority over polynomials of different degrees that were proposed in previous 2D lane detection approaches. Our continuous representation allows us to model even complex lane shapes at any position in the 3D space, while implicitly enforcing smoothness constraints. Our model is validated on a synthetic 3D lane dataset including a variety of scenes in terms of complexity of road shape and illumination. We outperform the state-of-the-art in nearly all geometric performance metrics and achieve a great leap in the detection rate. In contrast to discrete representations, our parametric model requires no post-processing achieving highest processing speed. Additionally, we provide a thorough analysis over different parametric representations for 3D lane detection. The code and trained models are available on our project website https://3d-splinenet.github.io/.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D-SpLineNet: 3D Traffic Line Detection using Parametric Spline Representations\",\"authors\":\"M. Pittner, A. Condurache, J. Janai\",\"doi\":\"10.1109/WACV56688.2023.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monocular 3D traffic line detection jointly tackles the detection of lane markings and regression of their 3D location. The greatest challenge is the exact estimation of various line shapes in the world, which highly depends on the chosen representation. While anchor-based and grid-based line representations have been proposed, all suffer from the same limitation, the necessity of discretizing the 3D space. To address this limitation, we present an anchor-free parametric lane representation, which defines traffic lines as continuous curves in 3D space. Choosing splines as our representation, we show their superiority over polynomials of different degrees that were proposed in previous 2D lane detection approaches. Our continuous representation allows us to model even complex lane shapes at any position in the 3D space, while implicitly enforcing smoothness constraints. Our model is validated on a synthetic 3D lane dataset including a variety of scenes in terms of complexity of road shape and illumination. We outperform the state-of-the-art in nearly all geometric performance metrics and achieve a great leap in the detection rate. In contrast to discrete representations, our parametric model requires no post-processing achieving highest processing speed. Additionally, we provide a thorough analysis over different parametric representations for 3D lane detection. The code and trained models are available on our project website https://3d-splinenet.github.io/.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

单目三维交通线检测结合了车道标线的检测和车道标线三维位置的回归。最大的挑战是对世界上各种线条形状的精确估计,这在很大程度上取决于所选择的表示。虽然已经提出了基于锚点和基于网格的线表示,但它们都有同样的局限性,即必须离散三维空间。为了解决这一限制,我们提出了一种无锚的参数化车道表示,它将交通线路定义为三维空间中的连续曲线。选择样条作为我们的表示,我们显示了它们比以前在二维车道检测方法中提出的不同程度的多项式的优越性。我们的连续表示允许我们在3D空间的任何位置建模甚至复杂的车道形状,同时隐式地执行平滑约束。我们的模型在一个合成的3D车道数据集上进行了验证,该数据集包括各种场景的道路形状和照明的复杂性。我们在几乎所有几何性能指标上都超越了最先进的技术,并在检测率上实现了巨大的飞跃。与离散表示相比,我们的参数模型不需要后处理,从而实现最高的处理速度。此外,我们还对3D车道检测的不同参数表示进行了全面分析。代码和经过训练的模型可在我们的项目网站https://3d-splinenet.github.io/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-SpLineNet: 3D Traffic Line Detection using Parametric Spline Representations
Monocular 3D traffic line detection jointly tackles the detection of lane markings and regression of their 3D location. The greatest challenge is the exact estimation of various line shapes in the world, which highly depends on the chosen representation. While anchor-based and grid-based line representations have been proposed, all suffer from the same limitation, the necessity of discretizing the 3D space. To address this limitation, we present an anchor-free parametric lane representation, which defines traffic lines as continuous curves in 3D space. Choosing splines as our representation, we show their superiority over polynomials of different degrees that were proposed in previous 2D lane detection approaches. Our continuous representation allows us to model even complex lane shapes at any position in the 3D space, while implicitly enforcing smoothness constraints. Our model is validated on a synthetic 3D lane dataset including a variety of scenes in terms of complexity of road shape and illumination. We outperform the state-of-the-art in nearly all geometric performance metrics and achieve a great leap in the detection rate. In contrast to discrete representations, our parametric model requires no post-processing achieving highest processing speed. Additionally, we provide a thorough analysis over different parametric representations for 3D lane detection. The code and trained models are available on our project website https://3d-splinenet.github.io/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信