任务10:探索基于手套和变压器的在线性别歧视可解释检测方法

Hee Jung Choi, Trevor Chow, Aaron Wan, Hong Meng Yam, S. Yogeswaran, Beining Zhou
{"title":"任务10:探索基于手套和变压器的在线性别歧视可解释检测方法","authors":"Hee Jung Choi, Trevor Chow, Aaron Wan, Hong Meng Yam, S. Yogeswaran, Beining Zhou","doi":"10.48550/arXiv.2305.04356","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the methods we applied at SemEval-2023 Task 10: Towards the Explainable Detection of Online Sexism. Given an input text, we perform three classification tasks to predict whether the text is sexist and classify the sexist text into subcategories in order to provide an additional explanation as to why the text is sexist. We explored many different types of models, including GloVe embeddings as the baseline approach, transformer-based deep learning models like BERT, RoBERTa, and DeBERTa, ensemble models, and model blending. We explored various data cleaning and augmentation methods to improve model performance. Pre-training transformer models yielded significant improvements in performance, and ensembles and blending slightly improved robustness in the F1 score.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stanford MLab at SemEval-2023 Task 10: Exploring GloVe- and Transformer-Based Methods for the Explainable Detection of Online Sexism\",\"authors\":\"Hee Jung Choi, Trevor Chow, Aaron Wan, Hong Meng Yam, S. Yogeswaran, Beining Zhou\",\"doi\":\"10.48550/arXiv.2305.04356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the methods we applied at SemEval-2023 Task 10: Towards the Explainable Detection of Online Sexism. Given an input text, we perform three classification tasks to predict whether the text is sexist and classify the sexist text into subcategories in order to provide an additional explanation as to why the text is sexist. We explored many different types of models, including GloVe embeddings as the baseline approach, transformer-based deep learning models like BERT, RoBERTa, and DeBERTa, ensemble models, and model blending. We explored various data cleaning and augmentation methods to improve model performance. Pre-training transformer models yielded significant improvements in performance, and ensembles and blending slightly improved robustness in the F1 score.\",\"PeriodicalId\":444285,\"journal\":{\"name\":\"International Workshop on Semantic Evaluation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Semantic Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.04356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了我们在SemEval-2023任务10中应用的方法:迈向可解释的在线性别歧视检测。给定一个输入文本,我们执行三个分类任务来预测文本是否性别歧视,并将性别歧视文本分类为子类别,以便为文本为什么是性别歧视提供额外的解释。我们探索了许多不同类型的模型,包括作为基线方法的GloVe嵌入、基于转换器的深度学习模型(如BERT、RoBERTa和DeBERTa)、集成模型和模型混合。我们探索了各种数据清理和增强方法来提高模型性能。预训练变压器模型在性能上取得了显著的改进,集成和混合在F1分数上略微提高了鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stanford MLab at SemEval-2023 Task 10: Exploring GloVe- and Transformer-Based Methods for the Explainable Detection of Online Sexism
In this paper, we discuss the methods we applied at SemEval-2023 Task 10: Towards the Explainable Detection of Online Sexism. Given an input text, we perform three classification tasks to predict whether the text is sexist and classify the sexist text into subcategories in order to provide an additional explanation as to why the text is sexist. We explored many different types of models, including GloVe embeddings as the baseline approach, transformer-based deep learning models like BERT, RoBERTa, and DeBERTa, ensemble models, and model blending. We explored various data cleaning and augmentation methods to improve model performance. Pre-training transformer models yielded significant improvements in performance, and ensembles and blending slightly improved robustness in the F1 score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信