{"title":"基于提取-总结基线的多人对话中值得注意的话语自动检测","authors":"S. Banerjee, Alexander I. Rudnicky","doi":"10.1109/SLT.2008.4777869","DOIUrl":null,"url":null,"abstract":"Our goal is to reduce meeting participants' note-taking effort by automatically identifying utterances whose contents meeting participants are likely to include in their notes. Though note-taking is different from meeting summarization, these two problems are related. In this paper we apply techniques developed in extractive meeting summarization research to the problem of identifying noteworthy utterances. We show that these algorithms achieve an f-measure of 0.14 over a 5-meeting sequence of related meetings. The precision - 0.15 - is triple that of the trivial baseline of simply labeling every utterance as noteworthy. We also introduce the concept of ldquoshow-worthyrdquo utterances - utterances that contain information that could conceivably result in a note. We show that such utterances can be recognized with an 81% accuracy (compared to 53% accuracy of a majority classifier). Further, if non-show-worthy utterances are filtered out, the precision of noteworthiness detection improves by 33% relative.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An extractive-summarization baseline for the automatic detection of noteworthy utterances in multi-party human-human dialog\",\"authors\":\"S. Banerjee, Alexander I. Rudnicky\",\"doi\":\"10.1109/SLT.2008.4777869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our goal is to reduce meeting participants' note-taking effort by automatically identifying utterances whose contents meeting participants are likely to include in their notes. Though note-taking is different from meeting summarization, these two problems are related. In this paper we apply techniques developed in extractive meeting summarization research to the problem of identifying noteworthy utterances. We show that these algorithms achieve an f-measure of 0.14 over a 5-meeting sequence of related meetings. The precision - 0.15 - is triple that of the trivial baseline of simply labeling every utterance as noteworthy. We also introduce the concept of ldquoshow-worthyrdquo utterances - utterances that contain information that could conceivably result in a note. We show that such utterances can be recognized with an 81% accuracy (compared to 53% accuracy of a majority classifier). Further, if non-show-worthy utterances are filtered out, the precision of noteworthiness detection improves by 33% relative.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An extractive-summarization baseline for the automatic detection of noteworthy utterances in multi-party human-human dialog
Our goal is to reduce meeting participants' note-taking effort by automatically identifying utterances whose contents meeting participants are likely to include in their notes. Though note-taking is different from meeting summarization, these two problems are related. In this paper we apply techniques developed in extractive meeting summarization research to the problem of identifying noteworthy utterances. We show that these algorithms achieve an f-measure of 0.14 over a 5-meeting sequence of related meetings. The precision - 0.15 - is triple that of the trivial baseline of simply labeling every utterance as noteworthy. We also introduce the concept of ldquoshow-worthyrdquo utterances - utterances that contain information that could conceivably result in a note. We show that such utterances can be recognized with an 81% accuracy (compared to 53% accuracy of a majority classifier). Further, if non-show-worthy utterances are filtered out, the precision of noteworthiness detection improves by 33% relative.