基于提取-总结基线的多人对话中值得注意的话语自动检测

S. Banerjee, Alexander I. Rudnicky
{"title":"基于提取-总结基线的多人对话中值得注意的话语自动检测","authors":"S. Banerjee, Alexander I. Rudnicky","doi":"10.1109/SLT.2008.4777869","DOIUrl":null,"url":null,"abstract":"Our goal is to reduce meeting participants' note-taking effort by automatically identifying utterances whose contents meeting participants are likely to include in their notes. Though note-taking is different from meeting summarization, these two problems are related. In this paper we apply techniques developed in extractive meeting summarization research to the problem of identifying noteworthy utterances. We show that these algorithms achieve an f-measure of 0.14 over a 5-meeting sequence of related meetings. The precision - 0.15 - is triple that of the trivial baseline of simply labeling every utterance as noteworthy. We also introduce the concept of ldquoshow-worthyrdquo utterances - utterances that contain information that could conceivably result in a note. We show that such utterances can be recognized with an 81% accuracy (compared to 53% accuracy of a majority classifier). Further, if non-show-worthy utterances are filtered out, the precision of noteworthiness detection improves by 33% relative.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An extractive-summarization baseline for the automatic detection of noteworthy utterances in multi-party human-human dialog\",\"authors\":\"S. Banerjee, Alexander I. Rudnicky\",\"doi\":\"10.1109/SLT.2008.4777869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our goal is to reduce meeting participants' note-taking effort by automatically identifying utterances whose contents meeting participants are likely to include in their notes. Though note-taking is different from meeting summarization, these two problems are related. In this paper we apply techniques developed in extractive meeting summarization research to the problem of identifying noteworthy utterances. We show that these algorithms achieve an f-measure of 0.14 over a 5-meeting sequence of related meetings. The precision - 0.15 - is triple that of the trivial baseline of simply labeling every utterance as noteworthy. We also introduce the concept of ldquoshow-worthyrdquo utterances - utterances that contain information that could conceivably result in a note. We show that such utterances can be recognized with an 81% accuracy (compared to 53% accuracy of a majority classifier). Further, if non-show-worthy utterances are filtered out, the precision of noteworthiness detection improves by 33% relative.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们的目标是通过自动识别会议参与者可能在他们的笔记中包含的内容的话语来减少会议参与者做笔记的工作量。虽然记笔记和会议总结不同,但这两个问题是有联系的。在本文中,我们将提取会议摘要研究中发展起来的技术应用于识别值得注意的话语问题。我们表明,这些算法在相关会议的5次会议序列上实现了0.14的f度量。精确度为0.15,是简单地将每个话语标记为值得注意的简单基线的三倍。我们还介绍了ldquoshow-worthy - rdquo话语的概念,这些话语包含的信息可能会导致一个注释。我们表明,这样的话语可以以81%的准确率识别(相比之下,大多数分类器的准确率为53%)。此外,如果过滤掉不值得展示的话语,值得注意的检测精度相对提高了33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extractive-summarization baseline for the automatic detection of noteworthy utterances in multi-party human-human dialog
Our goal is to reduce meeting participants' note-taking effort by automatically identifying utterances whose contents meeting participants are likely to include in their notes. Though note-taking is different from meeting summarization, these two problems are related. In this paper we apply techniques developed in extractive meeting summarization research to the problem of identifying noteworthy utterances. We show that these algorithms achieve an f-measure of 0.14 over a 5-meeting sequence of related meetings. The precision - 0.15 - is triple that of the trivial baseline of simply labeling every utterance as noteworthy. We also introduce the concept of ldquoshow-worthyrdquo utterances - utterances that contain information that could conceivably result in a note. We show that such utterances can be recognized with an 81% accuracy (compared to 53% accuracy of a majority classifier). Further, if non-show-worthy utterances are filtered out, the precision of noteworthiness detection improves by 33% relative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信