近最优自适应多边形化

W. Seibold, K. Joy
{"title":"近最优自适应多边形化","authors":"W. Seibold, K. Joy","doi":"10.1109/CGI.1999.777956","DOIUrl":null,"url":null,"abstract":"Consider a triangulation of the xy plane, and a general surface z=f(x, y). The points of the triangle, when lifted to the surface, form a linear spline approximation to the surface. We are interested in the error between the surface and the linear approximant. In fact, we are interested in building triangulations in the plane such that the induced linear approximant is near-optimal with respect to a given error. We describe a new method, which iteratively adds points to a \"Delaunay-like\" triangulation of the plane. We locally approximate f by a quadratic surface and utilize this surface to establish an edge-flipping criterion for a convex quadrilateral that enables us to minimize the error between the surface and the triangulation.","PeriodicalId":165593,"journal":{"name":"1999 Proceedings Computer Graphics International","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Near-optimal adaptive polygonization\",\"authors\":\"W. Seibold, K. Joy\",\"doi\":\"10.1109/CGI.1999.777956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a triangulation of the xy plane, and a general surface z=f(x, y). The points of the triangle, when lifted to the surface, form a linear spline approximation to the surface. We are interested in the error between the surface and the linear approximant. In fact, we are interested in building triangulations in the plane such that the induced linear approximant is near-optimal with respect to a given error. We describe a new method, which iteratively adds points to a \\\"Delaunay-like\\\" triangulation of the plane. We locally approximate f by a quadratic surface and utilize this surface to establish an edge-flipping criterion for a convex quadrilateral that enables us to minimize the error between the surface and the triangulation.\",\"PeriodicalId\":165593,\"journal\":{\"name\":\"1999 Proceedings Computer Graphics International\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Proceedings Computer Graphics International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGI.1999.777956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Proceedings Computer Graphics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1999.777956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

考虑一个xy平面的三角剖分,一般曲面z=f(x, y)。三角形的点,当提升到曲面上时,形成一个线性样条近似曲面。我们感兴趣的是曲面和线性近似之间的误差。事实上,我们感兴趣的是在平面上建立三角剖分,使得诱导的线性近似对于给定的误差是接近最优的。我们描述了一种新的方法,该方法迭代地将点添加到平面的“类delaunay”三角剖分中。我们用二次曲面局部逼近f,并利用该曲面建立凸四边形的边翻转准则,使曲面与三角剖分之间的误差最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-optimal adaptive polygonization
Consider a triangulation of the xy plane, and a general surface z=f(x, y). The points of the triangle, when lifted to the surface, form a linear spline approximation to the surface. We are interested in the error between the surface and the linear approximant. In fact, we are interested in building triangulations in the plane such that the induced linear approximant is near-optimal with respect to a given error. We describe a new method, which iteratively adds points to a "Delaunay-like" triangulation of the plane. We locally approximate f by a quadratic surface and utilize this surface to establish an edge-flipping criterion for a convex quadrilateral that enables us to minimize the error between the surface and the triangulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信