基于深度神经网络的股票市场方向预测

Hakan Gunduz, Z. Cataltepe, Y. Yaslan
{"title":"基于深度神经网络的股票市场方向预测","authors":"Hakan Gunduz, Z. Cataltepe, Y. Yaslan","doi":"10.1109/SIU.2017.7960512","DOIUrl":null,"url":null,"abstract":"In this study, the daily movement directions of three frequently traded stocks (GARAN, THYAO and ISCTR) in Borsa Istanbul were predicted using deep neural networks. Technical indicators obtained from individual stock prices and dollar-gold prices were used as features in the prediction. Class labels indicating the movement direction were found using daily close prices of the stocks and they were aligned with the feature vectors. In order to perform the prediction process, the type of deep neural network, Convolutional Neural Network, was trained and the performance of the classification was evaluated by the accuracy and F-measure metrics. In the experiments performed, using both price and dollar-gold features, the movement directions in GARAN, THYAO and ISCTR stocks were predicted with the accuracy rates of 0.61, 0.578 and 0.574 respectively. Compared to using the price based features only, the use of dollar-gold features improved the classification performance.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Stock market direction prediction using deep neural networks\",\"authors\":\"Hakan Gunduz, Z. Cataltepe, Y. Yaslan\",\"doi\":\"10.1109/SIU.2017.7960512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the daily movement directions of three frequently traded stocks (GARAN, THYAO and ISCTR) in Borsa Istanbul were predicted using deep neural networks. Technical indicators obtained from individual stock prices and dollar-gold prices were used as features in the prediction. Class labels indicating the movement direction were found using daily close prices of the stocks and they were aligned with the feature vectors. In order to perform the prediction process, the type of deep neural network, Convolutional Neural Network, was trained and the performance of the classification was evaluated by the accuracy and F-measure metrics. In the experiments performed, using both price and dollar-gold features, the movement directions in GARAN, THYAO and ISCTR stocks were predicted with the accuracy rates of 0.61, 0.578 and 0.574 respectively. Compared to using the price based features only, the use of dollar-gold features improved the classification performance.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文利用深度神经网络对伊斯坦布尔证券交易所3只交易频繁的股票(GARAN、THYAO和ISCTR)的日运动方向进行预测。从个股价格和美元-黄金价格中获得的技术指标被用作预测的特征。使用股票的每日收盘价找到指示运动方向的类标签,并且它们与特征向量对齐。为了进行预测过程,对深度神经网络——卷积神经网络进行了训练,并通过准确率和F-measure指标对分类效果进行了评价。利用价格特征和美元-黄金特征预测GARAN、THYAO和ISCTR股票的运动方向,准确率分别为0.61、0.578和0.574。与仅使用基于价格的特征相比,使用美元-黄金特征提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock market direction prediction using deep neural networks
In this study, the daily movement directions of three frequently traded stocks (GARAN, THYAO and ISCTR) in Borsa Istanbul were predicted using deep neural networks. Technical indicators obtained from individual stock prices and dollar-gold prices were used as features in the prediction. Class labels indicating the movement direction were found using daily close prices of the stocks and they were aligned with the feature vectors. In order to perform the prediction process, the type of deep neural network, Convolutional Neural Network, was trained and the performance of the classification was evaluated by the accuracy and F-measure metrics. In the experiments performed, using both price and dollar-gold features, the movement directions in GARAN, THYAO and ISCTR stocks were predicted with the accuracy rates of 0.61, 0.578 and 0.574 respectively. Compared to using the price based features only, the use of dollar-gold features improved the classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信