变化点问题的z过程方法

I. Negri, Y. Nishiyama
{"title":"变化点问题的z过程方法","authors":"I. Negri, Y. Nishiyama","doi":"10.1201/9781315117768-13","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to develop a general, unified approach, based on some partial estimation functions which we call \"Z-process\", to the change point problems. The method proposed can be applied not only to ergodic models but also to some models where the Fisher information matrix is random. Applications to some concrete models, including especially a parametric model for volatilities of diffusion processes are presented. Simulations for randomly time-transformed Brownian bridge process appearing as the limit of the proposed test statistics are performed with computer intensive use.","PeriodicalId":429918,"journal":{"name":"Martingale Methods in Statistics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z-Process Method for Change Point Problems\",\"authors\":\"I. Negri, Y. Nishiyama\",\"doi\":\"10.1201/9781315117768-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to develop a general, unified approach, based on some partial estimation functions which we call \\\"Z-process\\\", to the change point problems. The method proposed can be applied not only to ergodic models but also to some models where the Fisher information matrix is random. Applications to some concrete models, including especially a parametric model for volatilities of diffusion processes are presented. Simulations for randomly time-transformed Brownian bridge process appearing as the limit of the proposed test statistics are performed with computer intensive use.\",\"PeriodicalId\":429918,\"journal\":{\"name\":\"Martingale Methods in Statistics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Martingale Methods in Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315117768-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Martingale Methods in Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315117768-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是建立一个通用的,统一的方法,基于部分估计函数,我们称之为“z过程”,来解决变化点问题。该方法不仅适用于遍历模型,而且适用于Fisher信息矩阵为随机的模型。给出了一些具体模型的应用,特别是扩散过程挥发性的参数模型。模拟随机时变布朗桥过程作为所提出的试验统计量的极限,并使用大量计算机进行了模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Z-Process Method for Change Point Problems
The aim of this paper is to develop a general, unified approach, based on some partial estimation functions which we call "Z-process", to the change point problems. The method proposed can be applied not only to ergodic models but also to some models where the Fisher information matrix is random. Applications to some concrete models, including especially a parametric model for volatilities of diffusion processes are presented. Simulations for randomly time-transformed Brownian bridge process appearing as the limit of the proposed test statistics are performed with computer intensive use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信