中继网络中有效的子网选择

Siddhartha Brahma, Ayan Sengupta, C. Fragouli
{"title":"中继网络中有效的子网选择","authors":"Siddhartha Brahma, Ayan Sengupta, C. Fragouli","doi":"10.1109/ISIT.2014.6875169","DOIUrl":null,"url":null,"abstract":"We consider a source that would like to communicate with a destination over a layered Gaussian relay network.We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-à-vis exhaustive integer optimization.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient subnetwork selection in relay networks\",\"authors\":\"Siddhartha Brahma, Ayan Sengupta, C. Fragouli\",\"doi\":\"10.1109/ISIT.2014.6875169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a source that would like to communicate with a destination over a layered Gaussian relay network.We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-à-vis exhaustive integer optimization.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑一个希望通过分层高斯中继网络与目标通信的源。我们提出了一种计算效率高的方法,可以选择一个给定大小的连接源和目标的近乎最优(在吞吐量方面)子网。我们的方法首先制定一个整数优化问题,使量化映射转发中继协议在选定的子网上可以实现的速率最大化;然后,我们放宽整数约束,以获得对实数的非线性优化。对于菱形网络,我们证明了这种在实数上的优化是凹的,而对于一般的分层网络,我们给出了近凹的经验证明,为解决松弛问题的有效算法铺平了道路。然后我们将松弛的解决方案四舍五入以选择一个特定的子网。使用现成的非线性优化算法进行的仿真表明,无论是对于菱形网络还是多层网络,该算法都具有真正的整数最优性能。即使使用这些非自定义算法,也可以通过-à-vis穷举整数优化节省大量时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient subnetwork selection in relay networks
We consider a source that would like to communicate with a destination over a layered Gaussian relay network.We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-à-vis exhaustive integer optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信