{"title":"中继网络中有效的子网选择","authors":"Siddhartha Brahma, Ayan Sengupta, C. Fragouli","doi":"10.1109/ISIT.2014.6875169","DOIUrl":null,"url":null,"abstract":"We consider a source that would like to communicate with a destination over a layered Gaussian relay network.We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-à-vis exhaustive integer optimization.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient subnetwork selection in relay networks\",\"authors\":\"Siddhartha Brahma, Ayan Sengupta, C. Fragouli\",\"doi\":\"10.1109/ISIT.2014.6875169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a source that would like to communicate with a destination over a layered Gaussian relay network.We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-à-vis exhaustive integer optimization.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a source that would like to communicate with a destination over a layered Gaussian relay network.We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-à-vis exhaustive integer optimization.