{"title":"基于基准分析的自适应嵌入式系统动态功耗降低","authors":"A. Scionti, S. Kavvadias, R. Giorgi","doi":"10.1109/MECO.2014.6862659","DOIUrl":null,"url":null,"abstract":"Discovering the most appropriate reconfiguration instants for improving performance and lowering power consumption is not a trivial problem. In this paper we show the benefit in terms of performance gain and power reduction of the dynamic adaptation (e.g., cache size, clock frequency, and core issue-width) of an embedded platform, through a design space exploration campaign, and focusing on a relevant case study. To this end, we analyze a set of benchmarks belonging to the embedded application domain with the aim of illustrating how the appropriate selection of reconfiguration instants can positively influence system performance and power consumption. Experimental results using the cjpeg benchmark show that power consumption can be reduced by an average of 22%. Our methodology can be used to create a set of run-time management policies for driving the adaptation process.","PeriodicalId":416168,"journal":{"name":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic power reduction in self-adaptive embedded systems through benchmark analysis\",\"authors\":\"A. Scionti, S. Kavvadias, R. Giorgi\",\"doi\":\"10.1109/MECO.2014.6862659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering the most appropriate reconfiguration instants for improving performance and lowering power consumption is not a trivial problem. In this paper we show the benefit in terms of performance gain and power reduction of the dynamic adaptation (e.g., cache size, clock frequency, and core issue-width) of an embedded platform, through a design space exploration campaign, and focusing on a relevant case study. To this end, we analyze a set of benchmarks belonging to the embedded application domain with the aim of illustrating how the appropriate selection of reconfiguration instants can positively influence system performance and power consumption. Experimental results using the cjpeg benchmark show that power consumption can be reduced by an average of 22%. Our methodology can be used to create a set of run-time management policies for driving the adaptation process.\",\"PeriodicalId\":416168,\"journal\":{\"name\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2014.6862659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2014.6862659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic power reduction in self-adaptive embedded systems through benchmark analysis
Discovering the most appropriate reconfiguration instants for improving performance and lowering power consumption is not a trivial problem. In this paper we show the benefit in terms of performance gain and power reduction of the dynamic adaptation (e.g., cache size, clock frequency, and core issue-width) of an embedded platform, through a design space exploration campaign, and focusing on a relevant case study. To this end, we analyze a set of benchmarks belonging to the embedded application domain with the aim of illustrating how the appropriate selection of reconfiguration instants can positively influence system performance and power consumption. Experimental results using the cjpeg benchmark show that power consumption can be reduced by an average of 22%. Our methodology can be used to create a set of run-time management policies for driving the adaptation process.