{"title":"一种新的音乐体裁自动分级方法","authors":"H. Ariyaratne, Dengsheng Zhang","doi":"10.1109/ICMEW.2012.104","DOIUrl":null,"url":null,"abstract":"Automatic music genre classification is an important component in Music Information Retrieval (MIR). It has gained lot of attention lately due to the rapid growth in the use of digital music. Past work in this area has already produced a number of audio features and classification techniques, however, genre classification still remains an unsolved problem. In this paper we explore a hybrid unsupervised/supervised top-down hierarchical classification approach. Most existing work on hierarchical music genre classification relies on human built trees and taxonomies, however these hierarchies may not always translate well into machine classification problems. Therefore, we explore an automatic approach to construct a classification tree through subspace cluster analysis. Experimental results validate the tree building algorithm and provide a new research direction for automatic genre classification. We also addressed the issue of scarcity in publicly available music datasets, by introducing a new dataset containing genre, artist and album labels.","PeriodicalId":385797,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo Workshops","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A Novel Automatic Hierachical Approach to Music Genre Classification\",\"authors\":\"H. Ariyaratne, Dengsheng Zhang\",\"doi\":\"10.1109/ICMEW.2012.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic music genre classification is an important component in Music Information Retrieval (MIR). It has gained lot of attention lately due to the rapid growth in the use of digital music. Past work in this area has already produced a number of audio features and classification techniques, however, genre classification still remains an unsolved problem. In this paper we explore a hybrid unsupervised/supervised top-down hierarchical classification approach. Most existing work on hierarchical music genre classification relies on human built trees and taxonomies, however these hierarchies may not always translate well into machine classification problems. Therefore, we explore an automatic approach to construct a classification tree through subspace cluster analysis. Experimental results validate the tree building algorithm and provide a new research direction for automatic genre classification. We also addressed the issue of scarcity in publicly available music datasets, by introducing a new dataset containing genre, artist and album labels.\",\"PeriodicalId\":385797,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo Workshops\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2012.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2012.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Automatic Hierachical Approach to Music Genre Classification
Automatic music genre classification is an important component in Music Information Retrieval (MIR). It has gained lot of attention lately due to the rapid growth in the use of digital music. Past work in this area has already produced a number of audio features and classification techniques, however, genre classification still remains an unsolved problem. In this paper we explore a hybrid unsupervised/supervised top-down hierarchical classification approach. Most existing work on hierarchical music genre classification relies on human built trees and taxonomies, however these hierarchies may not always translate well into machine classification problems. Therefore, we explore an automatic approach to construct a classification tree through subspace cluster analysis. Experimental results validate the tree building algorithm and provide a new research direction for automatic genre classification. We also addressed the issue of scarcity in publicly available music datasets, by introducing a new dataset containing genre, artist and album labels.