结构无二义性概率语法的学习

Dolav Nitay, D. Fisman, Michal Ziv-Ukelson
{"title":"结构无二义性概率语法的学习","authors":"Dolav Nitay, D. Fisman, Michal Ziv-Ukelson","doi":"10.46298/lmcs-19(1:10)2023","DOIUrl":null,"url":null,"abstract":"The problem of identifying a probabilistic context free grammar has two aspects: the first is determining the grammar's topology (the rules of the grammar) and the second is estimating probabilistic weights for each rule. Given the hardness results for learning context-free grammars in general, and probabilistic grammars in particular, most of the literature has concentrated on the second problem. In this work we address the first problem. We restrict attention to structurally unambiguous weighted context-free grammars (SUWCFG) and provide a query learning algorithm for strucuturally unambiguous probabilistic context-free grammars (SUPCFG). We show that SUWCFG can be represented using co-linear multiplicity tree automata (CMTA), and provide a polynomial learning algorithm that learns CMTAs. We show that the learned CMTA can be converted into a probabilistic grammar, thus providing a complete algorithm for learning a strucutrally unambiguous probabilistic context free grammar (both the grammar topology and the probabilistic weights) using structured membership queries and structured equivalence queries. We demonstrate the usefulness of our algorithm in learning PCFGs over genomic data.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning of Structurally Unambiguous Probabilistic Grammars\",\"authors\":\"Dolav Nitay, D. Fisman, Michal Ziv-Ukelson\",\"doi\":\"10.46298/lmcs-19(1:10)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of identifying a probabilistic context free grammar has two aspects: the first is determining the grammar's topology (the rules of the grammar) and the second is estimating probabilistic weights for each rule. Given the hardness results for learning context-free grammars in general, and probabilistic grammars in particular, most of the literature has concentrated on the second problem. In this work we address the first problem. We restrict attention to structurally unambiguous weighted context-free grammars (SUWCFG) and provide a query learning algorithm for strucuturally unambiguous probabilistic context-free grammars (SUPCFG). We show that SUWCFG can be represented using co-linear multiplicity tree automata (CMTA), and provide a polynomial learning algorithm that learns CMTAs. We show that the learned CMTA can be converted into a probabilistic grammar, thus providing a complete algorithm for learning a strucutrally unambiguous probabilistic context free grammar (both the grammar topology and the probabilistic weights) using structured membership queries and structured equivalence queries. We demonstrate the usefulness of our algorithm in learning PCFGs over genomic data.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(1:10)2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(1:10)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

识别概率上下文无关语法的问题有两个方面:第一个是确定语法的拓扑(语法的规则),第二个是估计每个规则的概率权重。考虑到学习上下文无关语法(特别是概率语法)的难度结果,大多数文献都集中在第二个问题上。在这项工作中,我们解决了第一个问题。我们将注意力限制在结构无二义加权上下文无语法(SUWCFG)上,并提供了一种结构无二义概率上下文无语法(SUPCFG)的查询学习算法。我们证明了SUWCFG可以用共线性多重树自动机(CMTA)来表示,并提供了一个学习CMTA的多项式学习算法。我们展示了学习到的CMTA可以转换为概率语法,从而提供了一个完整的算法,用于使用结构化成员查询和结构化等价查询来学习结构上无二义的概率上下文无关语法(语法拓扑和概率权重)。我们证明了我们的算法在基因组数据上学习pcfg的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of Structurally Unambiguous Probabilistic Grammars
The problem of identifying a probabilistic context free grammar has two aspects: the first is determining the grammar's topology (the rules of the grammar) and the second is estimating probabilistic weights for each rule. Given the hardness results for learning context-free grammars in general, and probabilistic grammars in particular, most of the literature has concentrated on the second problem. In this work we address the first problem. We restrict attention to structurally unambiguous weighted context-free grammars (SUWCFG) and provide a query learning algorithm for strucuturally unambiguous probabilistic context-free grammars (SUPCFG). We show that SUWCFG can be represented using co-linear multiplicity tree automata (CMTA), and provide a polynomial learning algorithm that learns CMTAs. We show that the learned CMTA can be converted into a probabilistic grammar, thus providing a complete algorithm for learning a strucutrally unambiguous probabilistic context free grammar (both the grammar topology and the probabilistic weights) using structured membership queries and structured equivalence queries. We demonstrate the usefulness of our algorithm in learning PCFGs over genomic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信