社交媒体新兴命名实体识别的分布式表示、LDA主题建模和深度学习

NUT@EMNLP Pub Date : 2017-09-01 DOI:10.18653/v1/W17-4420
Patrick Jansson, Shuhua Liu
{"title":"社交媒体新兴命名实体识别的分布式表示、LDA主题建模和深度学习","authors":"Patrick Jansson, Shuhua Liu","doi":"10.18653/v1/W17-4420","DOIUrl":null,"url":null,"abstract":"This paper reports our participation in the W-NUT 2017 shared task on emerging and rare entity recognition from user generated noisy text such as tweets, online reviews and forum discussions. To accomplish this challenging task, we explore an approach that combines LDA topic modelling with deep learning on word level and character level embeddings. The LDA topic modelling generates topic representation for each tweet which is used as a feature for each word in the tweet. The deep learning component consists of two-layer bidirectional LSTM and a CRF output layer. Our submitted result performed at 39.98 (F1) on entity and 37.77 on surface forms. Our new experiments after submission reached a best performance of 41.81 on entity and 40.57 on surface forms.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Distributed Representation, LDA Topic Modelling and Deep Learning for Emerging Named Entity Recognition from Social Media\",\"authors\":\"Patrick Jansson, Shuhua Liu\",\"doi\":\"10.18653/v1/W17-4420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports our participation in the W-NUT 2017 shared task on emerging and rare entity recognition from user generated noisy text such as tweets, online reviews and forum discussions. To accomplish this challenging task, we explore an approach that combines LDA topic modelling with deep learning on word level and character level embeddings. The LDA topic modelling generates topic representation for each tweet which is used as a feature for each word in the tweet. The deep learning component consists of two-layer bidirectional LSTM and a CRF output layer. Our submitted result performed at 39.98 (F1) on entity and 37.77 on surface forms. Our new experiments after submission reached a best performance of 41.81 on entity and 40.57 on surface forms.\",\"PeriodicalId\":207795,\"journal\":{\"name\":\"NUT@EMNLP\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUT@EMNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-4420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文报告了我们参与的W-NUT 2017共享任务,该任务涉及从用户生成的噪声文本(如推文、在线评论和论坛讨论)中识别新兴实体和罕见实体。为了完成这一具有挑战性的任务,我们探索了一种将LDA主题建模与单词级和字符级嵌入的深度学习相结合的方法。LDA主题建模为每条tweet生成主题表示,并将其用作tweet中每个单词的特征。深度学习组件由两层双向LSTM和一个CRF输出层组成。我们提交的结果在实体上表现为39.98 (F1),在表面形式上表现为37.77。我们提交后的新实验在实体上达到了最好的41.81分,在表面形式上达到了40.57分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Representation, LDA Topic Modelling and Deep Learning for Emerging Named Entity Recognition from Social Media
This paper reports our participation in the W-NUT 2017 shared task on emerging and rare entity recognition from user generated noisy text such as tweets, online reviews and forum discussions. To accomplish this challenging task, we explore an approach that combines LDA topic modelling with deep learning on word level and character level embeddings. The LDA topic modelling generates topic representation for each tweet which is used as a feature for each word in the tweet. The deep learning component consists of two-layer bidirectional LSTM and a CRF output layer. Our submitted result performed at 39.98 (F1) on entity and 37.77 on surface forms. Our new experiments after submission reached a best performance of 41.81 on entity and 40.57 on surface forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信