Cheng-Hsueh Tsai, F. Pepe, G. Mangraviti, Zhiwei Zong, J. Craninckx, P. Wambacq
{"title":"基于28nm CMOS的22.5 - 27.7 ghz快速锁相数字锁相环,用于毫米波通信,RMS抖动为220秒","authors":"Cheng-Hsueh Tsai, F. Pepe, G. Mangraviti, Zhiwei Zong, J. Craninckx, P. Wambacq","doi":"10.1109/ESSCIRC.2019.8902868","DOIUrl":null,"url":null,"abstract":"We present a 22.5–27.7-GHz fast-lock low-phase-noise bang-bang digital phase-locked loop (PLL) for mm-wave communication. The fast lock is achieved with the help of the proposed gear-shift algorithm, scaling up the PLL bandwidth for faster settling, and orderly reducing it for jitter performance. A digitally controlled oscillator (DCO), based on transformer feedback with a tunable source-bridged capacitor, exhibits low phase noise (PN) over a wide tuning range (FoM of −184 dBc/Hz and FoMT of −191 dBc/Hz). The PLL occupies 0.09-mm2 core area and exhibits 220-fs RMS jitter while consuming 25 mW, giving FoMRMS of −239 dB. Its settling time improves from 780 to 45 µs with our gear-shift algorithm. For 60-GHz communication, with a frequency multiplication factor of 2.5, this PLL covers all six channel frequencies of IEEE-802.11ad and is capable of supporting 128 QAM and beyond.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 22.5–27.7-GHz Fast-Lock Bang-Bang Digital PLL in 28-nm CMOS for Millimeter-Wave Communication With 220-fs RMS Jitter\",\"authors\":\"Cheng-Hsueh Tsai, F. Pepe, G. Mangraviti, Zhiwei Zong, J. Craninckx, P. Wambacq\",\"doi\":\"10.1109/ESSCIRC.2019.8902868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a 22.5–27.7-GHz fast-lock low-phase-noise bang-bang digital phase-locked loop (PLL) for mm-wave communication. The fast lock is achieved with the help of the proposed gear-shift algorithm, scaling up the PLL bandwidth for faster settling, and orderly reducing it for jitter performance. A digitally controlled oscillator (DCO), based on transformer feedback with a tunable source-bridged capacitor, exhibits low phase noise (PN) over a wide tuning range (FoM of −184 dBc/Hz and FoMT of −191 dBc/Hz). The PLL occupies 0.09-mm2 core area and exhibits 220-fs RMS jitter while consuming 25 mW, giving FoMRMS of −239 dB. Its settling time improves from 780 to 45 µs with our gear-shift algorithm. For 60-GHz communication, with a frequency multiplication factor of 2.5, this PLL covers all six channel frequencies of IEEE-802.11ad and is capable of supporting 128 QAM and beyond.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 22.5–27.7-GHz Fast-Lock Bang-Bang Digital PLL in 28-nm CMOS for Millimeter-Wave Communication With 220-fs RMS Jitter
We present a 22.5–27.7-GHz fast-lock low-phase-noise bang-bang digital phase-locked loop (PLL) for mm-wave communication. The fast lock is achieved with the help of the proposed gear-shift algorithm, scaling up the PLL bandwidth for faster settling, and orderly reducing it for jitter performance. A digitally controlled oscillator (DCO), based on transformer feedback with a tunable source-bridged capacitor, exhibits low phase noise (PN) over a wide tuning range (FoM of −184 dBc/Hz and FoMT of −191 dBc/Hz). The PLL occupies 0.09-mm2 core area and exhibits 220-fs RMS jitter while consuming 25 mW, giving FoMRMS of −239 dB. Its settling time improves from 780 to 45 µs with our gear-shift algorithm. For 60-GHz communication, with a frequency multiplication factor of 2.5, this PLL covers all six channel frequencies of IEEE-802.11ad and is capable of supporting 128 QAM and beyond.