S-Hellinger距离下预测密度估计量的极小性和容许性

Younes Ommane, I. Ouassou
{"title":"S-Hellinger距离下预测密度估计量的极小性和容许性","authors":"Younes Ommane, I. Ouassou","doi":"10.16929/AS/2019.1951.144","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the study of the efficiency of predictive density estimators of multivariate observables measured by the frequentist risk corresponding to S-Hellinger distances as a set of loss functions (for every α ∈ [0, 1]). The main themes, revolve around the inefficiency of minimum risk equivariant (MRE) predictors in high enough dimensions and about the inefficiency of plug-in estimators. We improve the plug-in for a dual point estimation loss with or without expanding the scale. A link between the S-Hellinger distances risk of plug-in type estimators and the risk under reflected normal loss for point estimation is established, bringing into play all the established literature on Stein type dominators. Further, we suggest dominant estimators with or without the presence of restrictions on the unknown mean parameter. Ultimately we prove under the new measure of goodness-of-fit dominance results under a restricted parameter space (multivariate and univariate). Key words : S-Hellinger Distances, Minimaxity, Admissibility, Stein estimation, concave loss, Predictive density estimation","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimaxity and Admissibility of Predictive Density Estimators Under S-Hellinger Distances\",\"authors\":\"Younes Ommane, I. Ouassou\",\"doi\":\"10.16929/AS/2019.1951.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the study of the efficiency of predictive density estimators of multivariate observables measured by the frequentist risk corresponding to S-Hellinger distances as a set of loss functions (for every α ∈ [0, 1]). The main themes, revolve around the inefficiency of minimum risk equivariant (MRE) predictors in high enough dimensions and about the inefficiency of plug-in estimators. We improve the plug-in for a dual point estimation loss with or without expanding the scale. A link between the S-Hellinger distances risk of plug-in type estimators and the risk under reflected normal loss for point estimation is established, bringing into play all the established literature on Stein type dominators. Further, we suggest dominant estimators with or without the presence of restrictions on the unknown mean parameter. Ultimately we prove under the new measure of goodness-of-fit dominance results under a restricted parameter space (multivariate and univariate). Key words : S-Hellinger Distances, Minimaxity, Admissibility, Stein estimation, concave loss, Predictive density estimation\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/AS/2019.1951.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/AS/2019.1951.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了用S-Hellinger距离对应的频率风险作为一组损失函数(对于每个α∈[0,1])来测量多元可观测值的预测密度估计器的效率。主要主题围绕着在足够高的维度中最小风险等变(MRE)预测器的低效率以及插件估计器的低效率。我们在扩展或不扩展规模的情况下改进了双点估计损失插件。建立了插入式估计量的S-Hellinger距离风险与点估计反映正态损失下的风险之间的联系,充分利用了所有关于Stein型支配量的已有文献。此外,我们建议在未知平均参数上存在或不存在限制的显性估计量。最后证明了在新的拟合优度度量下,在有限参数空间(多元和单变量)下的优势性结果。关键词:S-Hellinger距离,极小值,容许率,Stein估计,凹损失,预测密度估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimaxity and Admissibility of Predictive Density Estimators Under S-Hellinger Distances
In this paper, we consider the study of the efficiency of predictive density estimators of multivariate observables measured by the frequentist risk corresponding to S-Hellinger distances as a set of loss functions (for every α ∈ [0, 1]). The main themes, revolve around the inefficiency of minimum risk equivariant (MRE) predictors in high enough dimensions and about the inefficiency of plug-in estimators. We improve the plug-in for a dual point estimation loss with or without expanding the scale. A link between the S-Hellinger distances risk of plug-in type estimators and the risk under reflected normal loss for point estimation is established, bringing into play all the established literature on Stein type dominators. Further, we suggest dominant estimators with or without the presence of restrictions on the unknown mean parameter. Ultimately we prove under the new measure of goodness-of-fit dominance results under a restricted parameter space (multivariate and univariate). Key words : S-Hellinger Distances, Minimaxity, Admissibility, Stein estimation, concave loss, Predictive density estimation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信