大流行与德国市场动态的马尔可夫状态转换分析

Kangrong Tan, S. Tokinaga
{"title":"大流行与德国市场动态的马尔可夫状态转换分析","authors":"Kangrong Tan, S. Tokinaga","doi":"10.1109/CSCI54926.2021.00162","DOIUrl":null,"url":null,"abstract":"This paper deals with the impact of COVID-19 pandemic on the stock market. We focus on the link between the infected cases and the change of the stock market in Germany. We employ the Markov Regime Switching Analysis (MRSA) to expose the situations of COVID-19 pandemic, and the co-movement between the pandemic and the market. Through our empirical analysis, we find that MRSA works well to divide the whole time horizon into several intervals with different statistical properties, or different regime states.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov Regime Switching Analysis for the Pandemic and the Dynamics of German Market\",\"authors\":\"Kangrong Tan, S. Tokinaga\",\"doi\":\"10.1109/CSCI54926.2021.00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the impact of COVID-19 pandemic on the stock market. We focus on the link between the infected cases and the change of the stock market in Germany. We employ the Markov Regime Switching Analysis (MRSA) to expose the situations of COVID-19 pandemic, and the co-movement between the pandemic and the market. Through our empirical analysis, we find that MRSA works well to divide the whole time horizon into several intervals with different statistical properties, or different regime states.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了新冠肺炎疫情对股票市场的影响。我们重点关注感染病例与德国股市变化之间的联系。我们采用马尔科夫状态转换分析(MRSA)来揭示COVID-19大流行的情况,以及大流行与市场之间的共同运动。通过我们的实证分析,我们发现MRSA可以很好地将整个时间范围划分为具有不同统计属性或不同制度状态的几个区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov Regime Switching Analysis for the Pandemic and the Dynamics of German Market
This paper deals with the impact of COVID-19 pandemic on the stock market. We focus on the link between the infected cases and the change of the stock market in Germany. We employ the Markov Regime Switching Analysis (MRSA) to expose the situations of COVID-19 pandemic, and the co-movement between the pandemic and the market. Through our empirical analysis, we find that MRSA works well to divide the whole time horizon into several intervals with different statistical properties, or different regime states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信