利用并行架构枚举二进制线性代码的联合权重:多核cpu和gpu

Shohei Ando, Fumihiko Ino, T. Fujiwara, K. Hagihara
{"title":"利用并行架构枚举二进制线性代码的联合权重:多核cpu和gpu","authors":"Shohei Ando, Fumihiko Ino, T. Fujiwara, K. Hagihara","doi":"10.15803/IJNC.5.2_290","DOIUrl":null,"url":null,"abstract":"In this paper, we present a parallel algorithm for enumerating joint weight of a binary linear $(n,k)$ code, aiming at accelerating assessment of its decoding error probability for network coding. Our algorithm is implemented on a multi-core CPU system and an NVIDIA graphics processing unit (GPU) system using OpenMP and compute unified device architecture (CUDA), respectively. To reduce the number of pairs of codewords to be investigated, our parallel algorithm reduces dimension $k$ by focusing on the all-one vector included in many practical codes. We also employ a population count instruction to compute joint weight of codewords with a less number of instructions. Furthermore, an efficient atomic vote and reduce scheme is deployed in our GPU-based implementation. We apply our CPU- and GPU-based implementations to a subcode of a (127,22) BCH code to evaluate the impact of acceleration.","PeriodicalId":270166,"journal":{"name":"Int. J. Netw. Comput.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enumerating Joint Weight of a Binary Linear Code Using Parallel Architectures: multi-core CPUs and GPUs\",\"authors\":\"Shohei Ando, Fumihiko Ino, T. Fujiwara, K. Hagihara\",\"doi\":\"10.15803/IJNC.5.2_290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a parallel algorithm for enumerating joint weight of a binary linear $(n,k)$ code, aiming at accelerating assessment of its decoding error probability for network coding. Our algorithm is implemented on a multi-core CPU system and an NVIDIA graphics processing unit (GPU) system using OpenMP and compute unified device architecture (CUDA), respectively. To reduce the number of pairs of codewords to be investigated, our parallel algorithm reduces dimension $k$ by focusing on the all-one vector included in many practical codes. We also employ a population count instruction to compute joint weight of codewords with a less number of instructions. Furthermore, an efficient atomic vote and reduce scheme is deployed in our GPU-based implementation. We apply our CPU- and GPU-based implementations to a subcode of a (127,22) BCH code to evaluate the impact of acceleration.\",\"PeriodicalId\":270166,\"journal\":{\"name\":\"Int. J. Netw. Comput.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Netw. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15803/IJNC.5.2_290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Netw. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15803/IJNC.5.2_290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种计算二元线性$(n,k)$码联合权值的并行算法,旨在加速网络编码译码误码概率的评估。Â我们的算法分别在使用OpenMP和CUDA的多核CPU系统和NVIDIA图形处理单元(GPU)系统上实现。为了减少要研究的码字对的数量,我们的并行算法通过关注包含inÂ许多实际代码的全一向量来降低维度k。我们还使用一个总体计数指令来计算指令数较少的码字的联合权重。此外,在我们的基于gpu的实现中,部署了一个高效的原子投票和减少方案。Â我们将基于CPU和gpu的实现应用于(127,22)BCH代码的子代码,以评估加速的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerating Joint Weight of a Binary Linear Code Using Parallel Architectures: multi-core CPUs and GPUs
In this paper, we present a parallel algorithm for enumerating joint weight of a binary linear $(n,k)$ code, aiming at accelerating assessment of its decoding error probability for network coding. Our algorithm is implemented on a multi-core CPU system and an NVIDIA graphics processing unit (GPU) system using OpenMP and compute unified device architecture (CUDA), respectively. To reduce the number of pairs of codewords to be investigated, our parallel algorithm reduces dimension $k$ by focusing on the all-one vector included in many practical codes. We also employ a population count instruction to compute joint weight of codewords with a less number of instructions. Furthermore, an efficient atomic vote and reduce scheme is deployed in our GPU-based implementation. We apply our CPU- and GPU-based implementations to a subcode of a (127,22) BCH code to evaluate the impact of acceleration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信