基于电影内容和剧本结构的电影类型预测

Yusuke Nakano, Hiroaki Ohshima, Yusuke Yamamoto
{"title":"基于电影内容和剧本结构的电影类型预测","authors":"Yusuke Nakano, Hiroaki Ohshima, Yusuke Yamamoto","doi":"10.1145/3366030.3366100","DOIUrl":null,"url":null,"abstract":"In this study, we propose a method to classify genre-based films using film screenplays. The proposed method vectorizes films into two aspects, i.e., film content (i.e., what films tell viewers) and screenplay structure (i.e., how the films narrate stories), and classifies film genres using the support vector machine method. We applied the Doc2Vec algorithm to screenplay structure and to handle film content. In film production, for vectorizing films, we used the statistics of the four screenplay elements: scene, action, dialogue, and transition. Compared with baseline methods, the evaluation showed that the proposed method is better for classifying films of specific genres.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Film Genre Prediction Based on Film Content and Screenplay Structure\",\"authors\":\"Yusuke Nakano, Hiroaki Ohshima, Yusuke Yamamoto\",\"doi\":\"10.1145/3366030.3366100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a method to classify genre-based films using film screenplays. The proposed method vectorizes films into two aspects, i.e., film content (i.e., what films tell viewers) and screenplay structure (i.e., how the films narrate stories), and classifies film genres using the support vector machine method. We applied the Doc2Vec algorithm to screenplay structure and to handle film content. In film production, for vectorizing films, we used the statistics of the four screenplay elements: scene, action, dialogue, and transition. Compared with baseline methods, the evaluation showed that the proposed method is better for classifying films of specific genres.\",\"PeriodicalId\":446280,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366030.3366100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们提出了一种基于电影剧本的类型电影分类方法。该方法将电影矢量化为电影内容(即电影告诉观众什么)和剧本结构(即电影如何讲述故事)两个方面,并使用支持向量机方法对电影类型进行分类。我们将Doc2Vec算法应用于剧本结构和处理电影内容。在电影制作中,为了对电影进行矢量化,我们使用了四个剧本元素的统计:场景、动作、对话和过渡。与基线方法相比,评价结果表明,该方法对特定类型电影的分类效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Film Genre Prediction Based on Film Content and Screenplay Structure
In this study, we propose a method to classify genre-based films using film screenplays. The proposed method vectorizes films into two aspects, i.e., film content (i.e., what films tell viewers) and screenplay structure (i.e., how the films narrate stories), and classifies film genres using the support vector machine method. We applied the Doc2Vec algorithm to screenplay structure and to handle film content. In film production, for vectorizing films, we used the statistics of the four screenplay elements: scene, action, dialogue, and transition. Compared with baseline methods, the evaluation showed that the proposed method is better for classifying films of specific genres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信