一个定点实现的反向传播学习算法

R.K. Presley, R. Haggard
{"title":"一个定点实现的反向传播学习算法","authors":"R.K. Presley, R. Haggard","doi":"10.1109/SECON.1994.324283","DOIUrl":null,"url":null,"abstract":"In hardware implementations of digital artificial neural networks, the amount of logic that can be utilized is limited. Due to this limitation, learning algorithms that are to be executed in hardware must be implemented using fixed point arithmetic. Adapting the backpropagation learning algorithm to a fixed point arithmetic system requires many approximations, scaling techniques and the use of lookup tables. These methods are explained. The convergence results for a test example using fixed point, floating point and hardware implementations of the backpropagation algorithm are presented.<<ETX>>","PeriodicalId":119615,"journal":{"name":"Proceedings of SOUTHEASTCON '94","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A fixed point implementation of the backpropagation learning algorithm\",\"authors\":\"R.K. Presley, R. Haggard\",\"doi\":\"10.1109/SECON.1994.324283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hardware implementations of digital artificial neural networks, the amount of logic that can be utilized is limited. Due to this limitation, learning algorithms that are to be executed in hardware must be implemented using fixed point arithmetic. Adapting the backpropagation learning algorithm to a fixed point arithmetic system requires many approximations, scaling techniques and the use of lookup tables. These methods are explained. The convergence results for a test example using fixed point, floating point and hardware implementations of the backpropagation algorithm are presented.<<ETX>>\",\"PeriodicalId\":119615,\"journal\":{\"name\":\"Proceedings of SOUTHEASTCON '94\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SOUTHEASTCON '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1994.324283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1994.324283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在数字人工神经网络的硬件实现中,可以利用的逻辑数量是有限的。由于这种限制,要在硬件上执行的学习算法必须使用定点算法来实现。将反向传播学习算法适应于定点算法系统需要许多近似值、缩放技术和查找表的使用。对这些方法进行了说明。给出了一个使用定点、浮点和硬件实现反向传播算法的测试实例的收敛结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fixed point implementation of the backpropagation learning algorithm
In hardware implementations of digital artificial neural networks, the amount of logic that can be utilized is limited. Due to this limitation, learning algorithms that are to be executed in hardware must be implemented using fixed point arithmetic. Adapting the backpropagation learning algorithm to a fixed point arithmetic system requires many approximations, scaling techniques and the use of lookup tables. These methods are explained. The convergence results for a test example using fixed point, floating point and hardware implementations of the backpropagation algorithm are presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信