{"title":"基于复合分裂准则的树状分类规则贪婪生长","authors":"A. Nobel","doi":"10.1109/WITS.1994.513860","DOIUrl":null,"url":null,"abstract":"We establish the Bayes risk consistency of an unsupervised greedy-growing algorithm that produces tree-structured classifiers from labeled training vectors. The algorithm employs a composite splitting criterion equal to a weighted sum of Bayes risk and Euclidean distortion.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedy growing of tree-structured classification rules using a composite splitting criterion\",\"authors\":\"A. Nobel\",\"doi\":\"10.1109/WITS.1994.513860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the Bayes risk consistency of an unsupervised greedy-growing algorithm that produces tree-structured classifiers from labeled training vectors. The algorithm employs a composite splitting criterion equal to a weighted sum of Bayes risk and Euclidean distortion.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Greedy growing of tree-structured classification rules using a composite splitting criterion
We establish the Bayes risk consistency of an unsupervised greedy-growing algorithm that produces tree-structured classifiers from labeled training vectors. The algorithm employs a composite splitting criterion equal to a weighted sum of Bayes risk and Euclidean distortion.