{"title":"基于全卷积网络的潜在指纹细节提取","authors":"Yao Tang, Fei Gao, Jufu Feng","doi":"10.1109/BTAS.2017.8272689","DOIUrl":null,"url":null,"abstract":"Minutiae play a major role in fingerprint identification. Extracting reliable minutiae is difficult for latent fingerprints which are usually of poor quality. As the limitation of traditional handcrafted features, a fully convolutional network (FCN) is utilized to learn features directly from data to overcome complex background noises. Raw fingerprints are mapped to a correspondingly-sized minutia-score map with a fixed stride. And thus a large number of minutiae will be extracted through a given threshold. Then small regions centering at these minutia points are entered into a convolutional neural network (CNN) to reclassify these minutiae and calculate their orientations. The CNN shares convolutional layers with the fully convolutional network to speed up. 0.45 second is used on average to detect one fingerprint on a GPU. On the NIST SD27 database, we achieve 53% recall rate and 53% precise rate that outperform many other algorithms. Our trained model is also visualized to show that we have successfully extracted features preserving ridge information of a latent fingerprint.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Latent fingerprint minutia extraction using fully convolutional network\",\"authors\":\"Yao Tang, Fei Gao, Jufu Feng\",\"doi\":\"10.1109/BTAS.2017.8272689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minutiae play a major role in fingerprint identification. Extracting reliable minutiae is difficult for latent fingerprints which are usually of poor quality. As the limitation of traditional handcrafted features, a fully convolutional network (FCN) is utilized to learn features directly from data to overcome complex background noises. Raw fingerprints are mapped to a correspondingly-sized minutia-score map with a fixed stride. And thus a large number of minutiae will be extracted through a given threshold. Then small regions centering at these minutia points are entered into a convolutional neural network (CNN) to reclassify these minutiae and calculate their orientations. The CNN shares convolutional layers with the fully convolutional network to speed up. 0.45 second is used on average to detect one fingerprint on a GPU. On the NIST SD27 database, we achieve 53% recall rate and 53% precise rate that outperform many other algorithms. Our trained model is also visualized to show that we have successfully extracted features preserving ridge information of a latent fingerprint.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Latent fingerprint minutia extraction using fully convolutional network
Minutiae play a major role in fingerprint identification. Extracting reliable minutiae is difficult for latent fingerprints which are usually of poor quality. As the limitation of traditional handcrafted features, a fully convolutional network (FCN) is utilized to learn features directly from data to overcome complex background noises. Raw fingerprints are mapped to a correspondingly-sized minutia-score map with a fixed stride. And thus a large number of minutiae will be extracted through a given threshold. Then small regions centering at these minutia points are entered into a convolutional neural network (CNN) to reclassify these minutiae and calculate their orientations. The CNN shares convolutional layers with the fully convolutional network to speed up. 0.45 second is used on average to detect one fingerprint on a GPU. On the NIST SD27 database, we achieve 53% recall rate and 53% precise rate that outperform many other algorithms. Our trained model is also visualized to show that we have successfully extracted features preserving ridge information of a latent fingerprint.