疾驰

Adnan Aijaz, Aleksandar Stanoev, Usman Raza
{"title":"疾驰","authors":"Adnan Aijaz, Aleksandar Stanoev, Usman Raza","doi":"10.1145/3356401.3356413","DOIUrl":null,"url":null,"abstract":"Various legacy and emerging industrial applications require closed-loop control over multiple hops. Existing multi-hop wireless technologies do not completely fulfill the stringent requirements of closed-loop control. This paper proposes a novel wireless solution, termed as GALLOP, for closed-loop control over multi-hop networks. GALLOP adopts a pragmatic approach for tackling the peculiarities of closed-loop control. Key aspects of GALLOP design include control-aware multi-hop scheduling for cyclic information exchange with very low and deterministic latency, cooperative transmissions for very high reliability and low-overhead signaling mechanism for scalable operation in large-scale networks. GALLOP has been specifically designed for control loops closed over the whole multi-hop network with dynamics on the order of few milliseconds. Performance evaluation through hardware implementation on a Bluetooth 5 testbed and system-level simulations demonstrate the viability of GALLOP in providing high-performance connectivity as required by closed-loop control applications.","PeriodicalId":115175,"journal":{"name":"Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GALLOP\",\"authors\":\"Adnan Aijaz, Aleksandar Stanoev, Usman Raza\",\"doi\":\"10.1145/3356401.3356413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various legacy and emerging industrial applications require closed-loop control over multiple hops. Existing multi-hop wireless technologies do not completely fulfill the stringent requirements of closed-loop control. This paper proposes a novel wireless solution, termed as GALLOP, for closed-loop control over multi-hop networks. GALLOP adopts a pragmatic approach for tackling the peculiarities of closed-loop control. Key aspects of GALLOP design include control-aware multi-hop scheduling for cyclic information exchange with very low and deterministic latency, cooperative transmissions for very high reliability and low-overhead signaling mechanism for scalable operation in large-scale networks. GALLOP has been specifically designed for control loops closed over the whole multi-hop network with dynamics on the order of few milliseconds. Performance evaluation through hardware implementation on a Bluetooth 5 testbed and system-level simulations demonstrate the viability of GALLOP in providing high-performance connectivity as required by closed-loop control applications.\",\"PeriodicalId\":115175,\"journal\":{\"name\":\"Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3356401.3356413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Real-Time Networks and Systems - RTNS '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356401.3356413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
GALLOP
Various legacy and emerging industrial applications require closed-loop control over multiple hops. Existing multi-hop wireless technologies do not completely fulfill the stringent requirements of closed-loop control. This paper proposes a novel wireless solution, termed as GALLOP, for closed-loop control over multi-hop networks. GALLOP adopts a pragmatic approach for tackling the peculiarities of closed-loop control. Key aspects of GALLOP design include control-aware multi-hop scheduling for cyclic information exchange with very low and deterministic latency, cooperative transmissions for very high reliability and low-overhead signaling mechanism for scalable operation in large-scale networks. GALLOP has been specifically designed for control loops closed over the whole multi-hop network with dynamics on the order of few milliseconds. Performance evaluation through hardware implementation on a Bluetooth 5 testbed and system-level simulations demonstrate the viability of GALLOP in providing high-performance connectivity as required by closed-loop control applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信