无数据变换的鲁棒小波收缩估计在软件可靠性评估中的应用

Xiao Xiao, T. Dohi
{"title":"无数据变换的鲁棒小波收缩估计在软件可靠性评估中的应用","authors":"Xiao Xiao, T. Dohi","doi":"10.1109/SERE.2012.34","DOIUrl":null,"url":null,"abstract":"Since software failure occurrence process is well-modeled by a non-homogeneous Poisson process, it is of great interest to estimate accurately the software intensity function from observed software-fault count data. In the existing work the same authors introduced the wavelet-based techniques for this problem and found that the Haar wavelet transform provided a very powerful performance in estimating software intensity function. In this paper, we also study the Haar-wavelet-transform-based approach, but without using approximate transformations. In numerical study with real software-fault count data, we compare the proposed robust estimation with the existing wavelet-based estimation as well as the conventional maximum likelihood estimation and least squares estimation methods.","PeriodicalId":191716,"journal":{"name":"2012 IEEE Sixth International Conference on Software Security and Reliability","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust Wavelet Shrinkage Estimation without Data Transform for Software Reliability Assessment\",\"authors\":\"Xiao Xiao, T. Dohi\",\"doi\":\"10.1109/SERE.2012.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since software failure occurrence process is well-modeled by a non-homogeneous Poisson process, it is of great interest to estimate accurately the software intensity function from observed software-fault count data. In the existing work the same authors introduced the wavelet-based techniques for this problem and found that the Haar wavelet transform provided a very powerful performance in estimating software intensity function. In this paper, we also study the Haar-wavelet-transform-based approach, but without using approximate transformations. In numerical study with real software-fault count data, we compare the proposed robust estimation with the existing wavelet-based estimation as well as the conventional maximum likelihood estimation and least squares estimation methods.\",\"PeriodicalId\":191716,\"journal\":{\"name\":\"2012 IEEE Sixth International Conference on Software Security and Reliability\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Sixth International Conference on Software Security and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERE.2012.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Sixth International Conference on Software Security and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于软件故障发生过程是由非齐次泊松过程很好地建模的,因此从观察到的软件故障计数数据中准确估计软件强度函数是一个很有意义的问题。在现有的工作中,同一作者介绍了基于小波的技术来解决这个问题,并发现哈尔小波变换在估计软件强度函数方面提供了非常强大的性能。本文还研究了基于haar小波变换的方法,但没有使用近似变换。在实际软件故障计数数据的数值研究中,我们将所提出的鲁棒估计与现有的基于小波的估计以及传统的极大似然估计和最小二乘估计方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Wavelet Shrinkage Estimation without Data Transform for Software Reliability Assessment
Since software failure occurrence process is well-modeled by a non-homogeneous Poisson process, it is of great interest to estimate accurately the software intensity function from observed software-fault count data. In the existing work the same authors introduced the wavelet-based techniques for this problem and found that the Haar wavelet transform provided a very powerful performance in estimating software intensity function. In this paper, we also study the Haar-wavelet-transform-based approach, but without using approximate transformations. In numerical study with real software-fault count data, we compare the proposed robust estimation with the existing wavelet-based estimation as well as the conventional maximum likelihood estimation and least squares estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信