数论中乘法混沌的一个模型问题

K. Soundararajan, Asif Zaman
{"title":"数论中乘法混沌的一个模型问题","authors":"K. Soundararajan, Asif Zaman","doi":"10.4171/LEM/1031","DOIUrl":null,"url":null,"abstract":"Resolving a conjecture of Helson, Harper recently established that partial sums of random multiplicative functions typically exhibit more than square-root cancellation. Harper's work gives an example of a problem in number theory that is closely linked to ideas in probability theory connected with multiplicative chaos; another such closely related problem is the Fyodorov-Hiary-Keating conjecture on the maximum size of the Riemann zeta function in intervals of bounded length on the critical line. In this paper we consider a problem that might be thought of as a simplified function field version of Helson's conjecture. We develop and simplify the ideas of Harper in this context, with the hope that the simplified proof would be of use to readers seeking a gentle entry-point to this fascinating area.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A model problem for multiplicative chaos in number theory\",\"authors\":\"K. Soundararajan, Asif Zaman\",\"doi\":\"10.4171/LEM/1031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resolving a conjecture of Helson, Harper recently established that partial sums of random multiplicative functions typically exhibit more than square-root cancellation. Harper's work gives an example of a problem in number theory that is closely linked to ideas in probability theory connected with multiplicative chaos; another such closely related problem is the Fyodorov-Hiary-Keating conjecture on the maximum size of the Riemann zeta function in intervals of bounded length on the critical line. In this paper we consider a problem that might be thought of as a simplified function field version of Helson's conjecture. We develop and simplify the ideas of Harper in this context, with the hope that the simplified proof would be of use to readers seeking a gentle entry-point to this fascinating area.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/1031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/1031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过解决Helson的一个猜想,Harper最近确定了随机乘法函数的部分和通常表现出比平方根抵消更多的性质。哈珀的工作给出了数论中的一个问题的例子,这个问题与与乘法混沌相关的概率论中的思想密切相关;另一个与此密切相关的问题是Fyodorov-Hiary-Keating关于Riemann zeta函数在临界线上有界长度区间内的最大尺寸的猜想。在本文中,我们考虑一个可以被认为是Helson猜想的简化函数域版本的问题。在这种背景下,我们发展和简化了哈珀的思想,希望简化的证明对寻求进入这个迷人领域的温和入口的读者有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model problem for multiplicative chaos in number theory
Resolving a conjecture of Helson, Harper recently established that partial sums of random multiplicative functions typically exhibit more than square-root cancellation. Harper's work gives an example of a problem in number theory that is closely linked to ideas in probability theory connected with multiplicative chaos; another such closely related problem is the Fyodorov-Hiary-Keating conjecture on the maximum size of the Riemann zeta function in intervals of bounded length on the critical line. In this paper we consider a problem that might be thought of as a simplified function field version of Helson's conjecture. We develop and simplify the ideas of Harper in this context, with the hope that the simplified proof would be of use to readers seeking a gentle entry-point to this fascinating area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信