双正交小波的多贝齐多项式的根

J. Karam, Samer E. Mansour
{"title":"双正交小波的多贝齐多项式的根","authors":"J. Karam, Samer E. Mansour","doi":"10.1109/ICCITECHNOL.2012.6285823","DOIUrl":null,"url":null,"abstract":"The construction of orthogonal Daubechies wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, Biorthogonal Daubechies families of wavelets are considered and their filters are derived. In particular, the Biorthogonal wavelets Bior3.5, Bior3.9 and Bior6.8 are examined and the zeros distribution of their polynomials associated filters are located.","PeriodicalId":435718,"journal":{"name":"2012 International Conference on Communications and Information Technology (ICCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the roots of Daubechies polynomials for Biorthogonal wavelets\",\"authors\":\"J. Karam, Samer E. Mansour\",\"doi\":\"10.1109/ICCITECHNOL.2012.6285823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of orthogonal Daubechies wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, Biorthogonal Daubechies families of wavelets are considered and their filters are derived. In particular, the Biorthogonal wavelets Bior3.5, Bior3.9 and Bior6.8 are examined and the zeros distribution of their polynomials associated filters are located.\",\"PeriodicalId\":435718,\"journal\":{\"name\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communications and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHNOL.2012.6285823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHNOL.2012.6285823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过两通道完全重构滤波器组构造正交多贝西小波,需要确定滤波器的系数和与之相关的二项式多项式的根必须满足的必要条件。本文研究了小波的双正交多贝西族,并推导了它们的滤波器。特别地,研究了Bior3.5、Bior3.9和Bior6.8的双正交小波,确定了它们的多项式相关滤波器的零分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the roots of Daubechies polynomials for Biorthogonal wavelets
The construction of orthogonal Daubechies wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, Biorthogonal Daubechies families of wavelets are considered and their filters are derived. In particular, the Biorthogonal wavelets Bior3.5, Bior3.9 and Bior6.8 are examined and the zeros distribution of their polynomials associated filters are located.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信