没有背景问题的预测

José Ortiz-Bejar, Jesus Ortiz-Bejar, Alejandro Zamora-Méndez, Garibaldi Pineda-García, Mario Graff, Eric Sadit Tellez
{"title":"没有背景问题的预测","authors":"José Ortiz-Bejar, Jesus Ortiz-Bejar, Alejandro Zamora-Méndez, Garibaldi Pineda-García, Mario Graff, Eric Sadit Tellez","doi":"10.1109/ROPEC50909.2020.9258744","DOIUrl":null,"url":null,"abstract":"This work presents an analysis of four regression systems. Two of them are statistical: the widely used Auto-regressive Integrated Moving Average (ARIMA) and the state-of-the-art Facebook Prophet. From the deep learning school, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is also evaluated. We finish our quartet with a fine-tuned Nearest Neighbor model. The study is carried out over seventeen benchmarks; fifteen coming from M4-Competition and two more power systems time series, i.e., electricity demand and hydropower generation. For all the models, the regression systems are fitted and optimized to minimize user intervention. The results show that deep learning models obtained the best performance; nonetheless, the performance difference is not statistically significant with the rest of the systems tested.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting without context problem\",\"authors\":\"José Ortiz-Bejar, Jesus Ortiz-Bejar, Alejandro Zamora-Méndez, Garibaldi Pineda-García, Mario Graff, Eric Sadit Tellez\",\"doi\":\"10.1109/ROPEC50909.2020.9258744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an analysis of four regression systems. Two of them are statistical: the widely used Auto-regressive Integrated Moving Average (ARIMA) and the state-of-the-art Facebook Prophet. From the deep learning school, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is also evaluated. We finish our quartet with a fine-tuned Nearest Neighbor model. The study is carried out over seventeen benchmarks; fifteen coming from M4-Competition and two more power systems time series, i.e., electricity demand and hydropower generation. For all the models, the regression systems are fitted and optimized to minimize user intervention. The results show that deep learning models obtained the best performance; nonetheless, the performance difference is not statistically significant with the rest of the systems tested.\",\"PeriodicalId\":177447,\"journal\":{\"name\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC50909.2020.9258744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了四种回归系统的分析。其中两个是统计方面的:广泛使用的自回归综合移动平均(ARIMA)和最先进的Facebook Prophet。从深度学习学校,还评估了长短期记忆(LSTM)递归神经网络(RNN)。我们以一个经过微调的最近邻模型来结束我们的四重奏。这项研究在17个基准上进行;15个来自M4-Competition和另外两个电力系统时间序列,即电力需求和水力发电。对于所有模型,回归系统都进行了拟合和优化,以最大限度地减少用户干预。结果表明,深度学习模型获得了最好的性能;尽管如此,在测试的其余系统中,性能差异在统计上并不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting without context problem
This work presents an analysis of four regression systems. Two of them are statistical: the widely used Auto-regressive Integrated Moving Average (ARIMA) and the state-of-the-art Facebook Prophet. From the deep learning school, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is also evaluated. We finish our quartet with a fine-tuned Nearest Neighbor model. The study is carried out over seventeen benchmarks; fifteen coming from M4-Competition and two more power systems time series, i.e., electricity demand and hydropower generation. For all the models, the regression systems are fitted and optimized to minimize user intervention. The results show that deep learning models obtained the best performance; nonetheless, the performance difference is not statistically significant with the rest of the systems tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信