José Ortiz-Bejar, Jesus Ortiz-Bejar, Alejandro Zamora-Méndez, Garibaldi Pineda-García, Mario Graff, Eric Sadit Tellez
{"title":"没有背景问题的预测","authors":"José Ortiz-Bejar, Jesus Ortiz-Bejar, Alejandro Zamora-Méndez, Garibaldi Pineda-García, Mario Graff, Eric Sadit Tellez","doi":"10.1109/ROPEC50909.2020.9258744","DOIUrl":null,"url":null,"abstract":"This work presents an analysis of four regression systems. Two of them are statistical: the widely used Auto-regressive Integrated Moving Average (ARIMA) and the state-of-the-art Facebook Prophet. From the deep learning school, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is also evaluated. We finish our quartet with a fine-tuned Nearest Neighbor model. The study is carried out over seventeen benchmarks; fifteen coming from M4-Competition and two more power systems time series, i.e., electricity demand and hydropower generation. For all the models, the regression systems are fitted and optimized to minimize user intervention. The results show that deep learning models obtained the best performance; nonetheless, the performance difference is not statistically significant with the rest of the systems tested.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting without context problem\",\"authors\":\"José Ortiz-Bejar, Jesus Ortiz-Bejar, Alejandro Zamora-Méndez, Garibaldi Pineda-García, Mario Graff, Eric Sadit Tellez\",\"doi\":\"10.1109/ROPEC50909.2020.9258744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an analysis of four regression systems. Two of them are statistical: the widely used Auto-regressive Integrated Moving Average (ARIMA) and the state-of-the-art Facebook Prophet. From the deep learning school, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is also evaluated. We finish our quartet with a fine-tuned Nearest Neighbor model. The study is carried out over seventeen benchmarks; fifteen coming from M4-Competition and two more power systems time series, i.e., electricity demand and hydropower generation. For all the models, the regression systems are fitted and optimized to minimize user intervention. The results show that deep learning models obtained the best performance; nonetheless, the performance difference is not statistically significant with the rest of the systems tested.\",\"PeriodicalId\":177447,\"journal\":{\"name\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC50909.2020.9258744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work presents an analysis of four regression systems. Two of them are statistical: the widely used Auto-regressive Integrated Moving Average (ARIMA) and the state-of-the-art Facebook Prophet. From the deep learning school, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) is also evaluated. We finish our quartet with a fine-tuned Nearest Neighbor model. The study is carried out over seventeen benchmarks; fifteen coming from M4-Competition and two more power systems time series, i.e., electricity demand and hydropower generation. For all the models, the regression systems are fitted and optimized to minimize user intervention. The results show that deep learning models obtained the best performance; nonetheless, the performance difference is not statistically significant with the rest of the systems tested.