具有轨迹和转速约束的集体圆周运动

Shubham Sharma, Anoop Jain
{"title":"具有轨迹和转速约束的集体圆周运动","authors":"Shubham Sharma, Anoop Jain","doi":"10.1109/ICC54714.2021.9703143","DOIUrl":null,"url":null,"abstract":"This paper stabilizes the collective motion of a group of agents, with second-order unicycle model, about a desired circular orbit, while constraining their trajectories and turn-rates within predefined limits. Additionally, we achieve synchronization, balancing and splay patterns in their heading angles. To solve this problem, the stabilizing control laws are derived by combining the concept of the barrier Lyapunov function with phase-potential functions. Imposing these constraints have advantages in terms of the following: i) the agents do not transgress the given workspace and hence, this ensures safety from territorial attacks ii) maintain a proximity to the desired circular motion iii) the applied lateral force does not exceed the desired limit of a vehicle, imposed by its physical constraints. Simulations are provided to illustrate the theoretical findings.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective Circular Motion with Trajectory and Turn-Rate Constraints\",\"authors\":\"Shubham Sharma, Anoop Jain\",\"doi\":\"10.1109/ICC54714.2021.9703143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper stabilizes the collective motion of a group of agents, with second-order unicycle model, about a desired circular orbit, while constraining their trajectories and turn-rates within predefined limits. Additionally, we achieve synchronization, balancing and splay patterns in their heading angles. To solve this problem, the stabilizing control laws are derived by combining the concept of the barrier Lyapunov function with phase-potential functions. Imposing these constraints have advantages in terms of the following: i) the agents do not transgress the given workspace and hence, this ensures safety from territorial attacks ii) maintain a proximity to the desired circular motion iii) the applied lateral force does not exceed the desired limit of a vehicle, imposed by its physical constraints. Simulations are provided to illustrate the theoretical findings.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用二阶独轮车模型稳定了一群智能体围绕一个理想的圆形轨道的集体运动,同时将它们的轨迹和转换率约束在预定义的范围内。此外,我们在他们的航向角度实现同步,平衡和扩展模式。为了解决这一问题,将势垒Lyapunov函数与相势函数相结合,导出了稳定控制律。施加这些约束在以下方面具有优势:i)代理人不会超出给定的工作空间,因此,这确保了安全,不受领土攻击;ii)保持接近所需的圆周运动;iii)施加的横向力不会超过车辆的期望极限,这是由其物理约束施加的。通过仿真来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective Circular Motion with Trajectory and Turn-Rate Constraints
This paper stabilizes the collective motion of a group of agents, with second-order unicycle model, about a desired circular orbit, while constraining their trajectories and turn-rates within predefined limits. Additionally, we achieve synchronization, balancing and splay patterns in their heading angles. To solve this problem, the stabilizing control laws are derived by combining the concept of the barrier Lyapunov function with phase-potential functions. Imposing these constraints have advantages in terms of the following: i) the agents do not transgress the given workspace and hence, this ensures safety from territorial attacks ii) maintain a proximity to the desired circular motion iii) the applied lateral force does not exceed the desired limit of a vehicle, imposed by its physical constraints. Simulations are provided to illustrate the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信