多变量系统自适应静态解耦神经控制器

Feng Yang
{"title":"多变量系统自适应静态解耦神经控制器","authors":"Feng Yang","doi":"10.1109/ICACI.2012.6463205","DOIUrl":null,"url":null,"abstract":"The neurocontroller with adaptive static state decoupling for multivariable systems is proposed in this paper. In this new intelligent control system, a recursive least squares method with a changeable forgetting factor is used to obtain the parameters of the low-order model of the multivariable system. The multivariable system is decoupled statically, and then the neurocontroller is used in each input-output path to control the decoupling multivariable system. The simulation test results show that good performance, strong robustness and adaptability are obtained.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neurocontroller with adaptive static state decoupling for multivariable systems\",\"authors\":\"Feng Yang\",\"doi\":\"10.1109/ICACI.2012.6463205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neurocontroller with adaptive static state decoupling for multivariable systems is proposed in this paper. In this new intelligent control system, a recursive least squares method with a changeable forgetting factor is used to obtain the parameters of the low-order model of the multivariable system. The multivariable system is decoupled statically, and then the neurocontroller is used in each input-output path to control the decoupling multivariable system. The simulation test results show that good performance, strong robustness and adaptability are obtained.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种多变量系统自适应静态解耦神经控制器。在该智能控制系统中,采用可变遗忘因子的递推最小二乘法求解多变量系统的低阶模型参数。首先对多变量系统进行静态解耦,然后在每个输入输出路径上使用神经控制器对解耦后的多变量系统进行控制。仿真试验结果表明,该方法具有良好的性能、较强的鲁棒性和自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neurocontroller with adaptive static state decoupling for multivariable systems
The neurocontroller with adaptive static state decoupling for multivariable systems is proposed in this paper. In this new intelligent control system, a recursive least squares method with a changeable forgetting factor is used to obtain the parameters of the low-order model of the multivariable system. The multivariable system is decoupled statically, and then the neurocontroller is used in each input-output path to control the decoupling multivariable system. The simulation test results show that good performance, strong robustness and adaptability are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信