粒子群优化从理论到应用

M. El-Shorbagy, A. Hassanien
{"title":"粒子群优化从理论到应用","authors":"M. El-Shorbagy, A. Hassanien","doi":"10.4018/IJRSDA.2018040101","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Particle Swarm Optimization from Theory to Applications\",\"authors\":\"M. El-Shorbagy, A. Hassanien\",\"doi\":\"10.4018/IJRSDA.2018040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

粒子群优化(PSO)被认为是群中最重要的方法之一intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks。Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems。PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications。Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique。Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it 'sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter设置,selectionand调优,dynamicenvironments, andhybridization。Also,we介绍了> > otherrepresentation,convergencepropertiesandtheapplicationsofPSO。Finally,conclusionsand discussionarepresented。Limitationstobeaddressedandthedirectionsofresearchinthefutureare确定,andanextensivebibliographyisalsoincluded。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization from Theory to Applications
Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信