M. El-Shorbagy, A. Hassanien
{"title":"粒子群优化从理论到应用","authors":"M. El-Shorbagy, A. Hassanien","doi":"10.4018/IJRSDA.2018040101","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Particle Swarm Optimization from Theory to Applications\",\"authors\":\"M. El-Shorbagy, A. Hassanien\",\"doi\":\"10.4018/IJRSDA.2018040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Particle Swarm Optimization from Theory to Applications
Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.