基于特征重用卷积神经网络的医学图像文本区域检测

Yang Liu, Jun Liu, S. Sun, Zhuang Du
{"title":"基于特征重用卷积神经网络的医学图像文本区域检测","authors":"Yang Liu, Jun Liu, S. Sun, Zhuang Du","doi":"10.1145/3366715.3366738","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of Chinese medical image text being missed and misdetected under the CTPN model, a new convolutional neural network DVNet based on the fusion of VGG convolutional neural network and DenseNet dense network was proposed. DVNet takes the first two layers of VGG network for deep feature extraction, and then connects DenseNet dense modules. Using the idea of feature reuse, the features of the front convolutional layer and the features of the back convolutional layer are output together. During post-processing, NMS is used to filter out redundant text boxes. In the Chinese medical text data set provided, three different networks, VGG, DenseNet and DVNet, were used to detect the text. The experimental results showed that the precision rate of DVNet were improved by 2%-3% compared with VGG and DenseNet.","PeriodicalId":425980,"journal":{"name":"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medical Image Text Area Detection Based on Feature Reuse Convolutional Neural Network\",\"authors\":\"Yang Liu, Jun Liu, S. Sun, Zhuang Du\",\"doi\":\"10.1145/3366715.3366738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of Chinese medical image text being missed and misdetected under the CTPN model, a new convolutional neural network DVNet based on the fusion of VGG convolutional neural network and DenseNet dense network was proposed. DVNet takes the first two layers of VGG network for deep feature extraction, and then connects DenseNet dense modules. Using the idea of feature reuse, the features of the front convolutional layer and the features of the back convolutional layer are output together. During post-processing, NMS is used to filter out redundant text boxes. In the Chinese medical text data set provided, three different networks, VGG, DenseNet and DVNet, were used to detect the text. The experimental results showed that the precision rate of DVNet were improved by 2%-3% compared with VGG and DenseNet.\",\"PeriodicalId\":425980,\"journal\":{\"name\":\"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366715.3366738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Robotics Systems and Vehicle Technology - RSVT '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366715.3366738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决CTPN模型下中医图像文本的漏检和误检问题,提出了一种基于VGG卷积神经网络和DenseNet密集网络融合的新型卷积神经网络DVNet。DVNet采用前两层VGG网络进行深度特征提取,然后连接DenseNet密集模块。采用特征重用的思想,将前卷积层的特征和后卷积层的特征一起输出。在后处理过程中,使用NMS对多余的文本框进行过滤。在提供的中医文本数据集中,使用VGG、DenseNet和DVNet三种不同的网络对文本进行检测。实验结果表明,与VGG和DenseNet相比,DVNet的准确率提高了2% ~ 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical Image Text Area Detection Based on Feature Reuse Convolutional Neural Network
In order to solve the problem of Chinese medical image text being missed and misdetected under the CTPN model, a new convolutional neural network DVNet based on the fusion of VGG convolutional neural network and DenseNet dense network was proposed. DVNet takes the first two layers of VGG network for deep feature extraction, and then connects DenseNet dense modules. Using the idea of feature reuse, the features of the front convolutional layer and the features of the back convolutional layer are output together. During post-processing, NMS is used to filter out redundant text boxes. In the Chinese medical text data set provided, three different networks, VGG, DenseNet and DVNet, were used to detect the text. The experimental results showed that the precision rate of DVNet were improved by 2%-3% compared with VGG and DenseNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信