混沌控制中的最优目标:一种离散哈密顿方法

Ulrich Vogl
{"title":"混沌控制中的最优目标:一种离散哈密顿方法","authors":"Ulrich Vogl","doi":"10.1109/SSD.2012.6197946","DOIUrl":null,"url":null,"abstract":"One of the most interesting paradigms of chaos control is the possibility of switching a system between different unstable periodic orbits (UPOs) with effectively zero control energy. We give a robust method to find finite-time optimal transient trajectories, and show how to stabilize both, UPOs and transients, within the same LQ-framework. The method is quite general, and can also be used to drive a system from static stationary points to an UPO. To illustrate our approach we apply it to the controlled logistic map, and also to an experimental driven-pendulum setup.","PeriodicalId":425823,"journal":{"name":"International Multi-Conference on Systems, Sygnals & Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal targeting in chaos control: A discrete Hamiltonian approach\",\"authors\":\"Ulrich Vogl\",\"doi\":\"10.1109/SSD.2012.6197946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting paradigms of chaos control is the possibility of switching a system between different unstable periodic orbits (UPOs) with effectively zero control energy. We give a robust method to find finite-time optimal transient trajectories, and show how to stabilize both, UPOs and transients, within the same LQ-framework. The method is quite general, and can also be used to drive a system from static stationary points to an UPO. To illustrate our approach we apply it to the controlled logistic map, and also to an experimental driven-pendulum setup.\",\"PeriodicalId\":425823,\"journal\":{\"name\":\"International Multi-Conference on Systems, Sygnals & Devices\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Multi-Conference on Systems, Sygnals & Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2012.6197946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Multi-Conference on Systems, Sygnals & Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2012.6197946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混沌控制最有趣的范例之一是在不同的不稳定周期轨道(UPOs)之间切换系统的可能性,有效的零控制能量。我们给出了一种鲁棒方法来寻找有限时间最优瞬态轨迹,并展示了如何在相同的lq框架内稳定upo和瞬态轨迹。该方法非常通用,也可用于驱动系统从静态静止点到UPO。为了说明我们的方法,我们将其应用于受控逻辑图,以及实验驱动摆装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal targeting in chaos control: A discrete Hamiltonian approach
One of the most interesting paradigms of chaos control is the possibility of switching a system between different unstable periodic orbits (UPOs) with effectively zero control energy. We give a robust method to find finite-time optimal transient trajectories, and show how to stabilize both, UPOs and transients, within the same LQ-framework. The method is quite general, and can also be used to drive a system from static stationary points to an UPO. To illustrate our approach we apply it to the controlled logistic map, and also to an experimental driven-pendulum setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信