{"title":"基于可扩展邻近度的原子探针数据大规模分析方法","authors":"Hao Lu, S. Seal, J. Poplawsky","doi":"10.1109/HiPC.2018.00034","DOIUrl":null,"url":null,"abstract":"Powered by recent advances in data acquisition technologies, today's state-of-the-art atom probe microscopes yield data sets with sizes ranging from a few million atoms to billions of atoms. Analysis of these atomic data sets within rea-sonable turnaround times is a pressing data analysis challenge for material scientists currently equipped with software systems that do not scale to these massive data sets. Here, we present the shared memory component of a larger ongoing effort to develop a multi-feature data analysis framework capable of analyzing atom probe data of all sizes and scales from desktop multicore machines to large-scale high-performance computing platforms with hybrid (shared and distributed memory) architectures. Our focus here is on a broad class of popular atom probe data analysis methods that rely on core time-consuming k-NN queries. We present a scalable, heuristic algorithm for k-NN queries using three-dimensional range trees. To demonstrate its efficacy, the k-NN algorithm is integrated with two use cases of atom probe data analysis methods and the resulting analysis times are shown to speedup by over 20X on a 32-core Cray XC40 node using workloads up to 8 million atoms, which is already beyond the at-scale capabilities of existing atom probe software. Using this k-NN algorithm, we also introduce a novel parameter estimation method for a class of cluster finding methods, called friends-of-friends (FoF) methods, to completely bypass their expensive pre-processing steps. In each case, we validate the results on a variety of control data sets.","PeriodicalId":113335,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","volume":"96 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Proximity-Based Methods for Large-Scale Analysis of Atom Probe Data\",\"authors\":\"Hao Lu, S. Seal, J. Poplawsky\",\"doi\":\"10.1109/HiPC.2018.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Powered by recent advances in data acquisition technologies, today's state-of-the-art atom probe microscopes yield data sets with sizes ranging from a few million atoms to billions of atoms. Analysis of these atomic data sets within rea-sonable turnaround times is a pressing data analysis challenge for material scientists currently equipped with software systems that do not scale to these massive data sets. Here, we present the shared memory component of a larger ongoing effort to develop a multi-feature data analysis framework capable of analyzing atom probe data of all sizes and scales from desktop multicore machines to large-scale high-performance computing platforms with hybrid (shared and distributed memory) architectures. Our focus here is on a broad class of popular atom probe data analysis methods that rely on core time-consuming k-NN queries. We present a scalable, heuristic algorithm for k-NN queries using three-dimensional range trees. To demonstrate its efficacy, the k-NN algorithm is integrated with two use cases of atom probe data analysis methods and the resulting analysis times are shown to speedup by over 20X on a 32-core Cray XC40 node using workloads up to 8 million atoms, which is already beyond the at-scale capabilities of existing atom probe software. Using this k-NN algorithm, we also introduce a novel parameter estimation method for a class of cluster finding methods, called friends-of-friends (FoF) methods, to completely bypass their expensive pre-processing steps. In each case, we validate the results on a variety of control data sets.\",\"PeriodicalId\":113335,\"journal\":{\"name\":\"2018 IEEE 25th International Conference on High Performance Computing (HiPC)\",\"volume\":\"96 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th International Conference on High Performance Computing (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2018.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Proximity-Based Methods for Large-Scale Analysis of Atom Probe Data
Powered by recent advances in data acquisition technologies, today's state-of-the-art atom probe microscopes yield data sets with sizes ranging from a few million atoms to billions of atoms. Analysis of these atomic data sets within rea-sonable turnaround times is a pressing data analysis challenge for material scientists currently equipped with software systems that do not scale to these massive data sets. Here, we present the shared memory component of a larger ongoing effort to develop a multi-feature data analysis framework capable of analyzing atom probe data of all sizes and scales from desktop multicore machines to large-scale high-performance computing platforms with hybrid (shared and distributed memory) architectures. Our focus here is on a broad class of popular atom probe data analysis methods that rely on core time-consuming k-NN queries. We present a scalable, heuristic algorithm for k-NN queries using three-dimensional range trees. To demonstrate its efficacy, the k-NN algorithm is integrated with two use cases of atom probe data analysis methods and the resulting analysis times are shown to speedup by over 20X on a 32-core Cray XC40 node using workloads up to 8 million atoms, which is already beyond the at-scale capabilities of existing atom probe software. Using this k-NN algorithm, we also introduce a novel parameter estimation method for a class of cluster finding methods, called friends-of-friends (FoF) methods, to completely bypass their expensive pre-processing steps. In each case, we validate the results on a variety of control data sets.