调整业务流程模型

R. Dijkman, M. Dumas, L. García-Bañuelos, R. Uba
{"title":"调整业务流程模型","authors":"R. Dijkman, M. Dumas, L. García-Bañuelos, R. Uba","doi":"10.1109/EDOC.2009.11","DOIUrl":null,"url":null,"abstract":"This paper studies the following problem: given a pair of business process models, determine which elements in one model are related to which elements in the other model. This problem arises in the context of merging different versions or variants of a business process model or when comparing business process models in order to display their similarities and differences. The paper investigates two approaches to this alignment problem: one based purely on lexical matching of pairs of elements and another based on error-correcting graph matching. Using a set of models taken from real-life scenarios, the paper empirically shows that graph matching techniques yield a significantly higher precision than pure lexical matching, while achieving comparable recall.","PeriodicalId":405456,"journal":{"name":"2009 IEEE International Enterprise Distributed Object Computing Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"Aligning Business Process Models\",\"authors\":\"R. Dijkman, M. Dumas, L. García-Bañuelos, R. Uba\",\"doi\":\"10.1109/EDOC.2009.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the following problem: given a pair of business process models, determine which elements in one model are related to which elements in the other model. This problem arises in the context of merging different versions or variants of a business process model or when comparing business process models in order to display their similarities and differences. The paper investigates two approaches to this alignment problem: one based purely on lexical matching of pairs of elements and another based on error-correcting graph matching. Using a set of models taken from real-life scenarios, the paper empirically shows that graph matching techniques yield a significantly higher precision than pure lexical matching, while achieving comparable recall.\",\"PeriodicalId\":405456,\"journal\":{\"name\":\"2009 IEEE International Enterprise Distributed Object Computing Conference\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Enterprise Distributed Object Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDOC.2009.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Enterprise Distributed Object Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOC.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

本文研究了以下问题:给定一对业务流程模型,确定一个模型中的哪些元素与另一个模型中的哪些元素相关。在合并业务流程模型的不同版本或变体的上下文中,或者在比较业务流程模型以显示其异同时,会出现此问题。本文研究了两种解决这种对齐问题的方法:一种是纯粹基于元素对的词法匹配,另一种是基于纠错图匹配。使用一组取自现实生活场景的模型,本文实证地表明,图匹配技术比纯词汇匹配产生了更高的精度,同时实现了相当的召回。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aligning Business Process Models
This paper studies the following problem: given a pair of business process models, determine which elements in one model are related to which elements in the other model. This problem arises in the context of merging different versions or variants of a business process model or when comparing business process models in order to display their similarities and differences. The paper investigates two approaches to this alignment problem: one based purely on lexical matching of pairs of elements and another based on error-correcting graph matching. Using a set of models taken from real-life scenarios, the paper empirically shows that graph matching techniques yield a significantly higher precision than pure lexical matching, while achieving comparable recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信