{"title":"克服机器学习模型构建中数据危害的缓解技术","authors":"A. Arslan","doi":"10.5121/csit.2021.111916","DOIUrl":null,"url":null,"abstract":"Given the impact of Machine Learning (ML) on individuals and the society, understanding how harm might be occur throughout the ML life cycle becomes critical more than ever. By offering a framework to determine distinct potential sources of downstream harm in ML pipeline, the paper demonstrates the importance of choices throughout distinct phases of data collection, development, and deployment that extend far beyond just model training. Relevant mitigation techniques are also suggested for being used instead of merely relying on generic notions of what counts as fairness.","PeriodicalId":193651,"journal":{"name":"NLP Techniques and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation Techniques to Overcome Data Harm in Model Building for ML\",\"authors\":\"A. Arslan\",\"doi\":\"10.5121/csit.2021.111916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the impact of Machine Learning (ML) on individuals and the society, understanding how harm might be occur throughout the ML life cycle becomes critical more than ever. By offering a framework to determine distinct potential sources of downstream harm in ML pipeline, the paper demonstrates the importance of choices throughout distinct phases of data collection, development, and deployment that extend far beyond just model training. Relevant mitigation techniques are also suggested for being used instead of merely relying on generic notions of what counts as fairness.\",\"PeriodicalId\":193651,\"journal\":{\"name\":\"NLP Techniques and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NLP Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2021.111916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.111916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigation Techniques to Overcome Data Harm in Model Building for ML
Given the impact of Machine Learning (ML) on individuals and the society, understanding how harm might be occur throughout the ML life cycle becomes critical more than ever. By offering a framework to determine distinct potential sources of downstream harm in ML pipeline, the paper demonstrates the importance of choices throughout distinct phases of data collection, development, and deployment that extend far beyond just model training. Relevant mitigation techniques are also suggested for being used instead of merely relying on generic notions of what counts as fairness.