$G_{1}(c, n)$和$L_{1}(c,\ n)$数的恒等式及其在波导理论中的应用

G. Georgiev, M. Georgieva-Grosse
{"title":"$G_{1}(c, n)$和$L_{1}(c,\\ n)$数的恒等式及其在波导理论中的应用","authors":"G. Georgiev, M. Georgieva-Grosse","doi":"10.23919/PIERS.2018.8597760","DOIUrl":null,"url":null,"abstract":"It is proved numerically that for the same restricted positive integers <tex>$c$</tex> and natural numbers <tex>$n$</tex> the real positive numbers <tex>$G_{1}(c, n)$</tex> and <tex>$L_{1}(c, n)$</tex>, connected with certain kinds of zeros of the complex Kummer confluent hypergeometric function <tex>$\\Phi(a, c;x)$</tex> of a specially selected complex first parameter <tex>$a$</tex>, second parameter <tex>$c$</tex>-acquiring values, as pointed out above and a positive purely imaginary variable <tex>$x$</tex>, coincide, provided <tex>$n$</tex> designates the number of the zeros mentioned. This statement is advanced as a Theorem for the identity of the <tex>$G_{1}(c, n)$</tex> and <tex>$L_{1}(c, n)$</tex> numbers. The physical interpretation of the truthfulness of the result established made, reflects the possibility to substantiate in two different ways the existence of specific envelope curves in (to compute by means of two algorithms) the phase diagrams of the azimuthally magnetized circular ferrite waveguide for normal <tex>$TE_{0n}$</tex> modes in case of negative magnetization which bound the wave propagation from the side of higher frequencies.","PeriodicalId":355217,"journal":{"name":"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theorem for the Identity of the $G_{1}(c, n)$ and $L_{1}(c,\\\\ n)$ Numbers and Its Application to the Theory of Waveguides\",\"authors\":\"G. Georgiev, M. Georgieva-Grosse\",\"doi\":\"10.23919/PIERS.2018.8597760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved numerically that for the same restricted positive integers <tex>$c$</tex> and natural numbers <tex>$n$</tex> the real positive numbers <tex>$G_{1}(c, n)$</tex> and <tex>$L_{1}(c, n)$</tex>, connected with certain kinds of zeros of the complex Kummer confluent hypergeometric function <tex>$\\\\Phi(a, c;x)$</tex> of a specially selected complex first parameter <tex>$a$</tex>, second parameter <tex>$c$</tex>-acquiring values, as pointed out above and a positive purely imaginary variable <tex>$x$</tex>, coincide, provided <tex>$n$</tex> designates the number of the zeros mentioned. This statement is advanced as a Theorem for the identity of the <tex>$G_{1}(c, n)$</tex> and <tex>$L_{1}(c, n)$</tex> numbers. The physical interpretation of the truthfulness of the result established made, reflects the possibility to substantiate in two different ways the existence of specific envelope curves in (to compute by means of two algorithms) the phase diagrams of the azimuthally magnetized circular ferrite waveguide for normal <tex>$TE_{0n}$</tex> modes in case of negative magnetization which bound the wave propagation from the side of higher frequencies.\",\"PeriodicalId\":355217,\"journal\":{\"name\":\"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/PIERS.2018.8597760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PIERS.2018.8597760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文从数值上证明了对于相同的限制正整数$c$和自然数$n$,实正数$G_{1}(c, n)$和$L_{1}(c, n)$与复Kummer合流超几何函数$\Phi(a, c;x)$的若干种零点相吻合,这些零点是由特殊选定的复第一参数$a$、第二参数$c$的若干种零点和正纯虚变量$x$所表示的。这个命题被推进为$G_{1}(c, n)$和$L_{1}(c, n)$的恒等式定理。对所建立的结果的真实性的物理解释,反映了在负磁化的情况下,以两种不同的方式证实(通过两种算法计算)方位角磁化环形铁氧体波导在正常TE_{0n}$模式下的相位图中存在特定包络曲线的可能性,这种曲线限制了波从高频侧传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theorem for the Identity of the $G_{1}(c, n)$ and $L_{1}(c,\ n)$ Numbers and Its Application to the Theory of Waveguides
It is proved numerically that for the same restricted positive integers $c$ and natural numbers $n$ the real positive numbers $G_{1}(c, n)$ and $L_{1}(c, n)$, connected with certain kinds of zeros of the complex Kummer confluent hypergeometric function $\Phi(a, c;x)$ of a specially selected complex first parameter $a$, second parameter $c$-acquiring values, as pointed out above and a positive purely imaginary variable $x$, coincide, provided $n$ designates the number of the zeros mentioned. This statement is advanced as a Theorem for the identity of the $G_{1}(c, n)$ and $L_{1}(c, n)$ numbers. The physical interpretation of the truthfulness of the result established made, reflects the possibility to substantiate in two different ways the existence of specific envelope curves in (to compute by means of two algorithms) the phase diagrams of the azimuthally magnetized circular ferrite waveguide for normal $TE_{0n}$ modes in case of negative magnetization which bound the wave propagation from the side of higher frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信