{"title":"弱光和突然光照变化下的鲁棒跟踪","authors":"Hatem Alismail, Brett Browning, S. Lucey","doi":"10.1109/3DV.2016.48","DOIUrl":null,"url":null,"abstract":"We present an algorithm for robust and real-time visual tracking under challenging illumination conditions characterized by poor lighting as well as sudden and drastic changes in illumination. Robustness is achieved by adapting illumination-invariant binary descriptors to dense image alignment using the Lucas and Kanade algorithm. The proposed adaptation preserves the Hamming distance under least-squares minimization, thus preserving the photometric invariance properties of binary descriptors. Due to the compactness of the descriptor, the algorithm runs in excess of 400 fps on laptops and 100 fps on mobile devices.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Robust Tracking in Low Light and Sudden Illumination Changes\",\"authors\":\"Hatem Alismail, Brett Browning, S. Lucey\",\"doi\":\"10.1109/3DV.2016.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for robust and real-time visual tracking under challenging illumination conditions characterized by poor lighting as well as sudden and drastic changes in illumination. Robustness is achieved by adapting illumination-invariant binary descriptors to dense image alignment using the Lucas and Kanade algorithm. The proposed adaptation preserves the Hamming distance under least-squares minimization, thus preserving the photometric invariance properties of binary descriptors. Due to the compactness of the descriptor, the algorithm runs in excess of 400 fps on laptops and 100 fps on mobile devices.\",\"PeriodicalId\":425304,\"journal\":{\"name\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2016.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Tracking in Low Light and Sudden Illumination Changes
We present an algorithm for robust and real-time visual tracking under challenging illumination conditions characterized by poor lighting as well as sudden and drastic changes in illumination. Robustness is achieved by adapting illumination-invariant binary descriptors to dense image alignment using the Lucas and Kanade algorithm. The proposed adaptation preserves the Hamming distance under least-squares minimization, thus preserving the photometric invariance properties of binary descriptors. Due to the compactness of the descriptor, the algorithm runs in excess of 400 fps on laptops and 100 fps on mobile devices.