{"title":"关于1步控制图的一些结果","authors":"M. F. Jalalvand, N. J. Rad, M. Ghorani","doi":"10.20948/MATHMON-2019-44-2","DOIUrl":null,"url":null,"abstract":"An exact 1-step dominating set in a graph G is a subset S of vertices of G such that ( ) 1 N v S for every vertex ( ) v V G . A graph is an exact 1-step domination graph if it contains an exact 1-step dominating set. In this paper, we obtain new upper bounds on the size of exact 1-step domination graphs. We also present an upper bound on the total domination number of an exact 1-step domination tree and characterize trees achieving equality for this bound.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some results on the exact 1-step domination graphs\",\"authors\":\"M. F. Jalalvand, N. J. Rad, M. Ghorani\",\"doi\":\"10.20948/MATHMON-2019-44-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An exact 1-step dominating set in a graph G is a subset S of vertices of G such that ( ) 1 N v S for every vertex ( ) v V G . A graph is an exact 1-step domination graph if it contains an exact 1-step dominating set. In this paper, we obtain new upper bounds on the size of exact 1-step domination graphs. We also present an upper bound on the total domination number of an exact 1-step domination tree and characterize trees achieving equality for this bound.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/MATHMON-2019-44-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/MATHMON-2019-44-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
图G中的一个精确的1步支配集是G的顶点的子集S,使得()1 N v S对于每个顶点()v v G。如果一个图包含一个精确1步控制集,那么它就是一个精确1步控制图。本文给出了精确1步控制图大小的新上界。我们还给出了精确1步控制树的总控制数的上界,并描述了在该上界上达到相等的树。
Some results on the exact 1-step domination graphs
An exact 1-step dominating set in a graph G is a subset S of vertices of G such that ( ) 1 N v S for every vertex ( ) v V G . A graph is an exact 1-step domination graph if it contains an exact 1-step dominating set. In this paper, we obtain new upper bounds on the size of exact 1-step domination graphs. We also present an upper bound on the total domination number of an exact 1-step domination tree and characterize trees achieving equality for this bound.