蒙特卡罗路径跟踪中Renyi熵自适应采样

Qing Xu, Ruijuan Hu, Lianping Xing, Yuan Xu
{"title":"蒙特卡罗路径跟踪中Renyi熵自适应采样","authors":"Qing Xu, Ruijuan Hu, Lianping Xing, Yuan Xu","doi":"10.1109/ISSPIT.2005.1577198","DOIUrl":null,"url":null,"abstract":"Adaptive sampling is an interesting tool to lower noise, which is one of the main problems of Monte Carlo global illumination algorithms such as the famous and baseline Monte Carlo path tracing. The classic information measure, namely, Shannon entropy has been applied successfully for adaptive sampling in Monte Carlo path tracing. In this paper we investigate the generalized Renyi entropy to establish the refinement criteria to guide both pixel super sampling and pixel subdivision adaptively. Implementation results show that the adaptive sampling based on Renyi entropy outperforms the counterpart based on Shannon entropy consistently","PeriodicalId":421826,"journal":{"name":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive sampling with Renyi entropy in Monte Carlo path tracing\",\"authors\":\"Qing Xu, Ruijuan Hu, Lianping Xing, Yuan Xu\",\"doi\":\"10.1109/ISSPIT.2005.1577198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive sampling is an interesting tool to lower noise, which is one of the main problems of Monte Carlo global illumination algorithms such as the famous and baseline Monte Carlo path tracing. The classic information measure, namely, Shannon entropy has been applied successfully for adaptive sampling in Monte Carlo path tracing. In this paper we investigate the generalized Renyi entropy to establish the refinement criteria to guide both pixel super sampling and pixel subdivision adaptively. Implementation results show that the adaptive sampling based on Renyi entropy outperforms the counterpart based on Shannon entropy consistently\",\"PeriodicalId\":421826,\"journal\":{\"name\":\"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2005.1577198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2005.1577198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自适应采样是一种有趣的降低噪声的工具,它是蒙特卡罗全局照明算法(如著名的基线蒙特卡罗路径跟踪)的主要问题之一。经典的信息测度即香农熵已成功地应用于蒙特卡罗路径跟踪中的自适应采样。本文研究了广义Renyi熵,建立了自适应指导像素超采样和像素细分的细化准则。实现结果表明,基于Renyi熵的自适应采样优于基于Shannon熵的自适应采样
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive sampling with Renyi entropy in Monte Carlo path tracing
Adaptive sampling is an interesting tool to lower noise, which is one of the main problems of Monte Carlo global illumination algorithms such as the famous and baseline Monte Carlo path tracing. The classic information measure, namely, Shannon entropy has been applied successfully for adaptive sampling in Monte Carlo path tracing. In this paper we investigate the generalized Renyi entropy to establish the refinement criteria to guide both pixel super sampling and pixel subdivision adaptively. Implementation results show that the adaptive sampling based on Renyi entropy outperforms the counterpart based on Shannon entropy consistently
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信