智能房屋中的异常检测:监测老年人的日常行为以检测跌倒

Yves M. Galvão, V. A. Albuquerque, Bruno José Torres Fernandes, M. Valença
{"title":"智能房屋中的异常检测:监测老年人的日常行为以检测跌倒","authors":"Yves M. Galvão, V. A. Albuquerque, Bruno José Torres Fernandes, M. Valença","doi":"10.1109/LA-CCI.2017.8285701","DOIUrl":null,"url":null,"abstract":"Smart Houses and Internet of Things (IoT) are two present tendencies in our days. Due to these technologies, the existent types of equipment in a smart house (sensors, thermostats, and video cams) allow us to analyze and collect data from a person's daily activities and use it in the field of anomaly detection. Therefore, noninvasive monitoring techniques can be applied to people's residences. When focusing on the elderly population, this type of approach can be used to detect and report a fall, decreasing the costs of monitoring these individuals. This paper uses images from a Microsoft Kinect cam, accelerometers' data, digital image processing and computer vision techniques to make a comparative study between different supervised classifiers and statistic approaches when they are being used in the fall detection problem. The results show that some of the tested classifiers are efficient in this task, reaching an accuracy of 96.67% and 98.79%.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"1946 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Anomaly detection in smart houses: Monitoring elderly daily behavior for fall detecting\",\"authors\":\"Yves M. Galvão, V. A. Albuquerque, Bruno José Torres Fernandes, M. Valença\",\"doi\":\"10.1109/LA-CCI.2017.8285701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart Houses and Internet of Things (IoT) are two present tendencies in our days. Due to these technologies, the existent types of equipment in a smart house (sensors, thermostats, and video cams) allow us to analyze and collect data from a person's daily activities and use it in the field of anomaly detection. Therefore, noninvasive monitoring techniques can be applied to people's residences. When focusing on the elderly population, this type of approach can be used to detect and report a fall, decreasing the costs of monitoring these individuals. This paper uses images from a Microsoft Kinect cam, accelerometers' data, digital image processing and computer vision techniques to make a comparative study between different supervised classifiers and statistic approaches when they are being used in the fall detection problem. The results show that some of the tested classifiers are efficient in this task, reaching an accuracy of 96.67% and 98.79%.\",\"PeriodicalId\":144567,\"journal\":{\"name\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"1946 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI.2017.8285701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

智能房屋和物联网(IoT)是当今时代的两大趋势。有了这些技术,智能住宅中现有的各类设备(传感器、恒温器和视频摄像头)可以让我们分析和收集个人日常活动的数据,并将其用于异常检测领域。因此,非侵入式监控技术可以应用于人们的住宅。当关注老年人群时,这种方法可用于检测和报告跌倒,从而降低监测这些人的成本。本文使用来自微软 Kinect 摄像机的图像、加速度计数据、数字图像处理和计算机视觉技术,对不同的监督分类器和统计方法在跌倒检测问题中的应用进行了比较研究。结果表明,一些经过测试的分类器在这项任务中非常有效,准确率分别达到 96.67% 和 98.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly detection in smart houses: Monitoring elderly daily behavior for fall detecting
Smart Houses and Internet of Things (IoT) are two present tendencies in our days. Due to these technologies, the existent types of equipment in a smart house (sensors, thermostats, and video cams) allow us to analyze and collect data from a person's daily activities and use it in the field of anomaly detection. Therefore, noninvasive monitoring techniques can be applied to people's residences. When focusing on the elderly population, this type of approach can be used to detect and report a fall, decreasing the costs of monitoring these individuals. This paper uses images from a Microsoft Kinect cam, accelerometers' data, digital image processing and computer vision techniques to make a comparative study between different supervised classifiers and statistic approaches when they are being used in the fall detection problem. The results show that some of the tested classifiers are efficient in this task, reaching an accuracy of 96.67% and 98.79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信