多项式时间随机预言机和分离复杂性类

J. M. Hitchcock, Adewale Sekoni, Hadi Shafei
{"title":"多项式时间随机预言机和分离复杂性类","authors":"J. M. Hitchcock, Adewale Sekoni, Hadi Shafei","doi":"10.1145/3434389","DOIUrl":null,"url":null,"abstract":"Bennett and Gill [1981] showed that PA ≠ NPA ≠ coNPA for a random oracle A, with probability 1. We investigate whether this result extends to individual polynomial-time random oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales and resource-bounded measure [Lutz 1992; Ambos-Spies et al. 1997], and p-betting-game random oracles using the betting games generalization of resource-bounded measure [Buhrman et al. 2000]. Every p-betting-game random oracle is also p-random; whether the two notions are equivalent is an open problem. (1) We first show that PA ≠ NPA for every oracle A that is p-betting-game random. Ideally, we would extend (1) to p-random oracles. We show that answering this either way would imply an unrelativized complexity class separation: (2) If PA ≠ NPA relative to every p-random oracle A, then BPP ≠ EXP. (3) If PA ≠ NPA relative to some p-random oracle A, then P ≠ PSPACE. Rossman, Servedio, and Tan [2015] showed that the polynomial-time hierarchy is infinite relative to a random oracle, solving a longstanding open problem. We consider whether we can extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random. Showing that PHA separates at even its first level would also imply an unrelativized complexity class separation: (4) If NPA ≠ coNPA for a p-betting-game measure 1 class of oracles A, then NP ≠ EXP. (5) If PHA is infinite relative to every p-random oracle A, then PH ≠ EXP. We also consider random oracles for time versus space, for example: (6) LA ≠ PA relative to every oracle A that is p-betting-game random.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial-Time Random Oracles and Separating Complexity Classes\",\"authors\":\"J. M. Hitchcock, Adewale Sekoni, Hadi Shafei\",\"doi\":\"10.1145/3434389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bennett and Gill [1981] showed that PA ≠ NPA ≠ coNPA for a random oracle A, with probability 1. We investigate whether this result extends to individual polynomial-time random oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales and resource-bounded measure [Lutz 1992; Ambos-Spies et al. 1997], and p-betting-game random oracles using the betting games generalization of resource-bounded measure [Buhrman et al. 2000]. Every p-betting-game random oracle is also p-random; whether the two notions are equivalent is an open problem. (1) We first show that PA ≠ NPA for every oracle A that is p-betting-game random. Ideally, we would extend (1) to p-random oracles. We show that answering this either way would imply an unrelativized complexity class separation: (2) If PA ≠ NPA relative to every p-random oracle A, then BPP ≠ EXP. (3) If PA ≠ NPA relative to some p-random oracle A, then P ≠ PSPACE. Rossman, Servedio, and Tan [2015] showed that the polynomial-time hierarchy is infinite relative to a random oracle, solving a longstanding open problem. We consider whether we can extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random. Showing that PHA separates at even its first level would also imply an unrelativized complexity class separation: (4) If NPA ≠ coNPA for a p-betting-game measure 1 class of oracles A, then NP ≠ EXP. (5) If PHA is infinite relative to every p-random oracle A, then PH ≠ EXP. We also consider random oracles for time versus space, for example: (6) LA ≠ PA relative to every oracle A that is p-betting-game random.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3434389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3434389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bennett和Gill[1981]证明了随机oracle a的PA≠NPA≠coNPA,概率为1。我们研究了这个结果是否可以推广到单个多项式时间随机预言。我们考虑了随机预言的两个概念:鞅意义上的p-随机预言和资源有界测度[Lutz 1992;Ambos-Spies et al. 1997],以及使用资源有限测度的投注游戏泛化的p-betting-game随机预言[Buhrman et al. 2000]。每个p-赌局随机神谕也是p-随机的;这两个概念是否等同是一个悬而未决的问题。(1)我们首先证明PA≠NPA对于每一个p-bet -game随机的oracle A。理想情况下,我们可以将(1)扩展到p-随机预言机。我们证明,无论以哪种方式回答这个问题,都意味着一个非相对化的复杂性类分离:(2)如果PA相对于每个P -随机oracle A≠NPA,则BPP≠EXP。(3)如果PA相对于某个P -随机oracle A≠NPA,则P≠PSPACE。Rossman, Servedio和Tan[2015]表明,相对于随机预言,多项式时间层次结构是无限的,解决了一个长期存在的开放问题。我们考虑是否可以推广(1)来证明PHA相对于p-投注-博弈随机的神谕A是无限的。表明PHA即使在其第一层也分离,也意味着非相对化的复杂性类分离:(4)如果对于p-投注-游戏测度1类神谕a的NPA≠coNPA,则NP≠EXP。(5)如果PHA相对于每个p-随机神谕a是无限的,则PH≠EXP。我们还考虑时间与空间的随机神谕,例如:(6)相对于每个p-投注-游戏随机的神谕a, LA≠PA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial-Time Random Oracles and Separating Complexity Classes
Bennett and Gill [1981] showed that PA ≠ NPA ≠ coNPA for a random oracle A, with probability 1. We investigate whether this result extends to individual polynomial-time random oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales and resource-bounded measure [Lutz 1992; Ambos-Spies et al. 1997], and p-betting-game random oracles using the betting games generalization of resource-bounded measure [Buhrman et al. 2000]. Every p-betting-game random oracle is also p-random; whether the two notions are equivalent is an open problem. (1) We first show that PA ≠ NPA for every oracle A that is p-betting-game random. Ideally, we would extend (1) to p-random oracles. We show that answering this either way would imply an unrelativized complexity class separation: (2) If PA ≠ NPA relative to every p-random oracle A, then BPP ≠ EXP. (3) If PA ≠ NPA relative to some p-random oracle A, then P ≠ PSPACE. Rossman, Servedio, and Tan [2015] showed that the polynomial-time hierarchy is infinite relative to a random oracle, solving a longstanding open problem. We consider whether we can extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random. Showing that PHA separates at even its first level would also imply an unrelativized complexity class separation: (4) If NPA ≠ coNPA for a p-betting-game measure 1 class of oracles A, then NP ≠ EXP. (5) If PHA is infinite relative to every p-random oracle A, then PH ≠ EXP. We also consider random oracles for time versus space, for example: (6) LA ≠ PA relative to every oracle A that is p-betting-game random.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信