多不相似数据表的自适应批量SOM

Anderson Dantas, F. D. Carvalho
{"title":"多不相似数据表的自适应批量SOM","authors":"Anderson Dantas, F. D. Carvalho","doi":"10.1109/ICTAI.2011.92","DOIUrl":null,"url":null,"abstract":"This paper introduces a clustering algorithm based on batch Self-Organizing Maps to partition objects taking into account their relational descriptions given by multiple dissimilarity matrices. The presented approach provides a partition of the objects and a prototype for each cluster, moreover the method is able to learn relevance weights for each dissimilarity matrix by optimizing an adequacy criterion that measures the fit between clusters and the respective prototypes. These relevance weights change at each iteration and are different from one cluster to another.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Adaptive Batch SOM for Multiple Dissimilarity Data Tables\",\"authors\":\"Anderson Dantas, F. D. Carvalho\",\"doi\":\"10.1109/ICTAI.2011.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a clustering algorithm based on batch Self-Organizing Maps to partition objects taking into account their relational descriptions given by multiple dissimilarity matrices. The presented approach provides a partition of the objects and a prototype for each cluster, moreover the method is able to learn relevance weights for each dissimilarity matrix by optimizing an adequacy criterion that measures the fit between clusters and the respective prototypes. These relevance weights change at each iteration and are different from one cluster to another.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种基于批量自组织映射的聚类算法,利用多个不相似矩阵给出的关系描述对对象进行划分。该方法为每个聚类提供对象的划分和原型,并且该方法能够通过优化衡量聚类与各自原型之间的拟合的充分性准则来学习每个不相似矩阵的相关权重。这些相关性权重在每次迭代中都会改变,并且在不同的集群之间是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Batch SOM for Multiple Dissimilarity Data Tables
This paper introduces a clustering algorithm based on batch Self-Organizing Maps to partition objects taking into account their relational descriptions given by multiple dissimilarity matrices. The presented approach provides a partition of the objects and a prototype for each cluster, moreover the method is able to learn relevance weights for each dissimilarity matrix by optimizing an adequacy criterion that measures the fit between clusters and the respective prototypes. These relevance weights change at each iteration and are different from one cluster to another.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信