{"title":"并网电压源逆变器的电网调压直接功率控制","authors":"Yonghao Gui, Chunghun Kim, C. Chung","doi":"10.23919/ACC.2017.7963259","DOIUrl":null,"url":null,"abstract":"We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Grid voltage modulated direct power control for grid connected voltage source inverters\",\"authors\":\"Yonghao Gui, Chunghun Kim, C. Chung\",\"doi\":\"10.23919/ACC.2017.7963259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grid voltage modulated direct power control for grid connected voltage source inverters
We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.