Arg-XAI:一个解释机器学习结果的工具

Stefano Bistarelli, Alessio Mancinelli, Francesco Santini, Carlo Taticchi
{"title":"Arg-XAI:一个解释机器学习结果的工具","authors":"Stefano Bistarelli, Alessio Mancinelli, Francesco Santini, Carlo Taticchi","doi":"10.1109/ICTAI56018.2022.00037","DOIUrl":null,"url":null,"abstract":"The requirement of explainability is gaining more and more importance in Artificial Intelligence applications based on Machine Learning techniques, especially in those contexts where critical decisions are entrusted to software systems (think, for example, of financial and medical consultancy). In this paper, we propose an Argumentation-based methodology for explaining the results predicted by Machine Learning models. Argumentation provides frameworks that can be used to represent and analyse logical relations between pieces of information, serving as a basis for constructing human tailored rational explanations to a given problem. In particular, we use extension-based semantics to find the rationale behind a class prediction.","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arg-XAI: a Tool for Explaining Machine Learning Results\",\"authors\":\"Stefano Bistarelli, Alessio Mancinelli, Francesco Santini, Carlo Taticchi\",\"doi\":\"10.1109/ICTAI56018.2022.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirement of explainability is gaining more and more importance in Artificial Intelligence applications based on Machine Learning techniques, especially in those contexts where critical decisions are entrusted to software systems (think, for example, of financial and medical consultancy). In this paper, we propose an Argumentation-based methodology for explaining the results predicted by Machine Learning models. Argumentation provides frameworks that can be used to represent and analyse logical relations between pieces of information, serving as a basis for constructing human tailored rational explanations to a given problem. In particular, we use extension-based semantics to find the rationale behind a class prediction.\",\"PeriodicalId\":354314,\"journal\":{\"name\":\"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI56018.2022.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在基于机器学习技术的人工智能应用中,对可解释性的要求变得越来越重要,特别是在那些将关键决策委托给软件系统的环境中(例如,想想金融和医疗咨询)。在本文中,我们提出了一种基于论证的方法来解释机器学习模型预测的结果。论证提供了可用于表示和分析信息片段之间的逻辑关系的框架,作为构建针对给定问题的人类定制理性解释的基础。特别是,我们使用基于扩展的语义来找到类预测背后的基本原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arg-XAI: a Tool for Explaining Machine Learning Results
The requirement of explainability is gaining more and more importance in Artificial Intelligence applications based on Machine Learning techniques, especially in those contexts where critical decisions are entrusted to software systems (think, for example, of financial and medical consultancy). In this paper, we propose an Argumentation-based methodology for explaining the results predicted by Machine Learning models. Argumentation provides frameworks that can be used to represent and analyse logical relations between pieces of information, serving as a basis for constructing human tailored rational explanations to a given problem. In particular, we use extension-based semantics to find the rationale behind a class prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信