罗马尼亚健康的空间计量经济分析与计算机视觉增强

F. Jurchiș
{"title":"罗马尼亚健康的空间计量经济分析与计算机视觉增强","authors":"F. Jurchiș","doi":"10.2478/icas-2019-0026","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this study is to analyze the health status in Romania at regional NUTS3 level together with its influential socio-economic factors. Apart from statistical and classical econometrics which are being used in most studies, a spatial analysis has been conducted in order to determine possible similarities and dissimilarities among regions, accounting for the fact that events taking place in a specific area are interrelated with the events in the neighboring regions. The negative distribution of the dependent variable, life expectancy, involves the use of Quantile Spatial Autoregressive Model which also allows to observe the socio-economic and environmental factor influences in different parts of health status proxy distribution. The analysis has led to the conclusion that greater the gaps between rich and poor, or greater the difference between less versus better educated, the greater the differences in health status and life expectancy are. Hence a need for policies designed to reduce territorial health disparities has been identified across Romania’s counties. Moreover, Computer Vision and Deep Learning techniques have been used in order to showcase data collection for urban green spaces variables given that more than half of the globe population is living in urban areas and urban greenery has a high positive influence on health. Using Deep Learning on this particular matter together with the Quantile Spatial Autoregressive Model is an innovative approach that has the main aim of improving the classical econometric modelling.","PeriodicalId":393626,"journal":{"name":"Proceedings of the International Conference on Applied Statistics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatial Econometric Analysis of Health in Romania Augmented with Computer Vision\",\"authors\":\"F. Jurchiș\",\"doi\":\"10.2478/icas-2019-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this study is to analyze the health status in Romania at regional NUTS3 level together with its influential socio-economic factors. Apart from statistical and classical econometrics which are being used in most studies, a spatial analysis has been conducted in order to determine possible similarities and dissimilarities among regions, accounting for the fact that events taking place in a specific area are interrelated with the events in the neighboring regions. The negative distribution of the dependent variable, life expectancy, involves the use of Quantile Spatial Autoregressive Model which also allows to observe the socio-economic and environmental factor influences in different parts of health status proxy distribution. The analysis has led to the conclusion that greater the gaps between rich and poor, or greater the difference between less versus better educated, the greater the differences in health status and life expectancy are. Hence a need for policies designed to reduce territorial health disparities has been identified across Romania’s counties. Moreover, Computer Vision and Deep Learning techniques have been used in order to showcase data collection for urban green spaces variables given that more than half of the globe population is living in urban areas and urban greenery has a high positive influence on health. Using Deep Learning on this particular matter together with the Quantile Spatial Autoregressive Model is an innovative approach that has the main aim of improving the classical econometric modelling.\",\"PeriodicalId\":393626,\"journal\":{\"name\":\"Proceedings of the International Conference on Applied Statistics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/icas-2019-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/icas-2019-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究的目的是分析罗马尼亚区域NUTS3水平的健康状况及其影响社会经济因素。除了在大多数研究中使用的统计和经典计量经济学之外,还进行了空间分析,以确定区域之间可能的相似和不同之处,因为在特定区域发生的事件与相邻区域的事件是相互关联的。因变量预期寿命的负分布涉及使用分位数空间自回归模型,该模型还允许观察社会经济和环境因素对不同部分健康状况代理分布的影响。分析得出的结论是,贫富差距越大,或者受教育程度越低与受教育程度越高,健康状况和预期寿命的差异就越大。因此,已确定罗马尼亚各县需要制定旨在减少地区卫生差距的政策。此外,计算机视觉和深度学习技术已被用于展示城市绿地变量的数据收集,因为全球一半以上的人口生活在城市地区,城市绿化对健康具有高度积极的影响。将深度学习与分位数空间自回归模型一起用于这一特定问题是一种创新方法,其主要目的是改进经典计量经济学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spatial Econometric Analysis of Health in Romania Augmented with Computer Vision
Abstract The purpose of this study is to analyze the health status in Romania at regional NUTS3 level together with its influential socio-economic factors. Apart from statistical and classical econometrics which are being used in most studies, a spatial analysis has been conducted in order to determine possible similarities and dissimilarities among regions, accounting for the fact that events taking place in a specific area are interrelated with the events in the neighboring regions. The negative distribution of the dependent variable, life expectancy, involves the use of Quantile Spatial Autoregressive Model which also allows to observe the socio-economic and environmental factor influences in different parts of health status proxy distribution. The analysis has led to the conclusion that greater the gaps between rich and poor, or greater the difference between less versus better educated, the greater the differences in health status and life expectancy are. Hence a need for policies designed to reduce territorial health disparities has been identified across Romania’s counties. Moreover, Computer Vision and Deep Learning techniques have been used in order to showcase data collection for urban green spaces variables given that more than half of the globe population is living in urban areas and urban greenery has a high positive influence on health. Using Deep Learning on this particular matter together with the Quantile Spatial Autoregressive Model is an innovative approach that has the main aim of improving the classical econometric modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信